References
Alin, Aylin. 2009. “Comparison of Pls Algorithms When Number of Objects Is Much Larger Than Number of Variables.” Statistical Papers 50 (4): 711–20. https://doi.org/10.1007/s00362-009-0251-7.
Almøy, Trygve. 1996. “A simulation study on comparison of prediction methods when only a few components are relevant.” Computational Statistics & Data Analysis 21 (1): 87–107. https://doi.org/10.1016/0167-9473(95)00006-2.
Chang, Winston, Joe Cheng, JJ Allaire, Yihui Xie, and Jonathan McPherson. 2018. Shiny: Web Application Framework for R. https://CRAN.R-project.org/package=shiny.
Cook, R. Dennis. 2018. An introduction to envelopes : dimension reduction for efficient estimation in multivariate statistics. 1st ed. Hoboken, NJ : John Wiley & Sons, 2018.
Cook, R Dennis, Bing Li, and Francesca Chiaromonte. 2010. “Envelope Models for Parsimonious and Efficient Multivariate Linear Regression.” Statistica Sinica 20 (3): 927–1010.
Cook, R. Dennis, Bing Li, and Francesca Chiaromonte. 2007. “Dimension reduction in regression without matrix inversion.” Biometrika 94 (3): 569–84. https://doi.org/10.1093/biomet/asm038.
Cook, R. Dennis, and Xin Zhang. 2015. “Simultaneous envelopes for multivariate linear regression.” Technometrics 57 (1): 11–25. https://doi.org/10.1080/00401706.2013.872700.
———. 2016. “Algorithms for Envelope Estimation.” Journal of Computational and Graphical Statistics 25 (1): 284–300. https://doi.org/10.1080/10618600.2015.1029577.
Cook, R. D., I. S. Helland, and Z. Su. 2013. “Envelopes and partial least squares regression.” Journal of the Royal Statistical Society. Series B: Statistical Methodology 75 (5): 851–77. https://doi.org/10.1111/rssb.12018.
Helland, Inge S. 1990. “Partial least squares regression and statistical models.” Scandinavian Journal of Statistics 17 (2): 97–114. https://doi.org/10.2307/4616159.
———. 2000. “Model Reduction for Prediction in Regression Models.” Scandinavian Journal of Statistics 27 (1): 1–20. https://doi.org/10.1111/1467-9469.00174.
Helland, Inge S., and Trygve Almøy. 1994. “Comparison of prediction methods when only a few components are relevant.” Journal of the American Statistical Association 89 (426): 583–91. https://doi.org/10.1080/01621459.1994.10476783.
Helland, Inge S., Solve Saebø, and Ha Kon Tjelmeland. 2012. “Near Optimal Prediction from Relevant Components.” Scandinavian Journal of Statistics 39 (4): 695–713. https://doi.org/10.1111/j.1467-9469.2011.00770.x.
Helland, Inge Svein, Solve Saebø, Trygve Almøy, Raju Rimal, Solve Sæbø, Trygve Almøy, and Raju Rimal. 2018. “Model and estimators for partial least squares regression.” Journal of Chemometrics 32 (9): e3044. https://doi.org/10.1002/cem.3044.
Indahl, Ulf. 2005. “A twist to partial least squares regression.” Journal of Chemometrics 19 (1): 32–44. https://doi.org/10.1002/cem.904.
Johnson, R. A., and D. W. Wichern. 2018. Applied Multivariate Statistical Analysis (Classic Version). Pearson Modern Classics for Advanced Statistics Series. Pearson Education Canada. https://books.google.no/books?id=QBqlswEACAAJ.
Jolliffe, I T. 2002. Principal Component Analysis, Second Edition. https://doi.org/10.2307/1270093.
Jong, Sijmen de. 1993. “SIMPLS: An alternative approach to partial least squares regression.” Chemometrics and Intelligent Laboratory Systems 18 (3): 251–63. https://doi.org/10.1016/0169-7439(93)85002-X.
Lee, Minji, and Zhihua Su. 2018. Renvlp: Computing Envelope Estimators. https://CRAN.R-project.org/package=Renvlp.
Mevik, Bjørn-Helge, Ron Wehrens, and Kristian Hovde Liland. 2018. Pls: Partial Least Squares and Principal Component Regression. https://CRAN.R-project.org/package=pls.
Naes, Tormod, and Harald Martens. 1985. “Comparison of prediction methods for multicollinear data.” Communications in Statistics - Simulation and Computation 14 (3): 545–76. https://doi.org/10.1080/03610918508812458.
Næs, Tormod, and Inge S Helland. 1993. “Relevant components in regression.” Scandinavian Journal of Statistics 20 (3): 239–50.
Næs, Tormod, Oliver Tomic, Nils Kristian Afseth, Vegard Segtnan, and Ingrid Måge. 2013. “Multi-Block Regression Based on Combinations of Orthogonalisation, Pls-Regression and Canonical Correlation Analysis.” Chemometrics and Intelligent Laboratory Systems 124: 32–42.
Rencher, Alvin C. 2003. Methods of Multivariate Analysis. Vol. 492. John Wiley & Sons.
Rimal, Raju, Trygve Almøy, and Solve Sæbø. 2018. “A tool for simulating multi-response linear model data.” Chemometrics and Intelligent Laboratory Systems 176 (May): 1–10. https://doi.org/10.1016/j.chemolab.2018.02.009.
Sæbø, Solve, Trygve Almøy, and Inge S. Helland. 2015. “Simrel - A versatile tool for linear model data simulation based on the concept of a relevant subspace and relevant predictors.” Chemometrics and Intelligent Laboratory Systems 146: 128–35. https://doi.org/10.1016/j.chemolab.2015.05.012.