
i
i

“Thesis” — 2019/10/8 — 23:16 — page I — #1 i
i

i
i

i
i

exploration of multi-response
multivariate methods

Utforskning av multi-respons multivariate metoder

philosophiae doctor (phd) thesis

raju rimal

Norwegian University of Life Sciences
Faculty of Chemistry, Biotechnology and Food Science

ås(2019)

Thesis Number: 2019:76
ISSN: 1894-6402

ISBN: 978-82-575-1636-9



i
i

“Thesis” — 2019/10/8 — 23:16 — page II — #2 i
i

i
i

i
i

The goal is to turn data into information, and information into insight.
- carly fiorina, former ceo of hewlett-packard

Supervisors:
Professor Solve Sæbø
Prorector of Education
Norwegian University of Life Sciences
Ås, Norway

Associate Professor Trygve Almøy
Norwegian University of Life Sciences
Faculty of Chemistry, Biotechnology and Food Science
Ås, Norway

Exploration of Multi-Response Multivariate Methods
phd thesis, 2019, okt. c© raju rimal

website:
https://therimalaya.github.com/thesis

e-mail:

raju.rimal@nmbu.no

This thesis is prepared with ArsClassica LATEX template with pandoc and
r-package bookdown.

https://therimalaya.github.com/thesis
mailto:raju.rimal@nmbu.no


i
i

“Thesis” — 2019/10/8 — 23:16 — page III — #3 i
i

i
i

i
i

S U M M A R Y

A linear regression model defines a linear relationship between two or
more random variables. The random variables that depend on other random
variables are often called response variables and the independent random
variables are called predictor variables. In most cases not all variation is
relevant for regression, i.e. only a certain amount of the variation in the
predictors is relevant and only so for a part of the variation in the response.
This leads to a reduction of the linear regression model where one can
imagine a subspace of the space spanned by the predictor variables that
contains all the relevant information for a subspace of the space spanned
by the response variables.

In this thesis we attempt to compare some new methods which are based
on the envelope model and some established methods such as principal
components regression (PCR) and partial least squares regression (PLS).
The comparison tests these methods on their performance of producing
minimum prediction and estimation error while modelling data simulated
with specifically designed properties. For the simulation we have also
created an R-package called simrel with a web interface.

A simulation model for a multi-response multivariate linear model, on
which the simulation tool is based, is discussed in the first paper. This
paper prepares a basic foundation for the simulations with the concept of
reduction of regression models. The second paper discusses the similarities
of the envelope, PCR and PLS population models. This paper compares
the prediction performance of several multivariate methods using a model
with a single response.

The final two papers make an extensive investigation evaluating the pre-
diction and estimation performance of established (PCR, PLS1 and PLS2)
and newly developed envelope based (Xenv and Senv) methods. Unsurpris-
ingly the study found that not one method dominates in all situations, but
their performance depend on the properties of the data they model. How-
ever, the envelope based methods have shown remarkable performance in
many cases, both in prediction and estimation. The study also recommend
researchers to use and evaluate the envelope methods.

III



i
i

“Thesis” — 2019/10/8 — 23:16 — page IV — #4 i
i

i
i

i
i

S A M M E N D R A G

En lineær regresjonsmodell definerer et lineært forhold mellom to eller
flere tilfeldige variabler. De tilfeldige variablene som er avhengige av andre
tilfeldige variabler, kalles ofte responsvariabler, og de uavhengige tilfeldige
variablene kalles prediktorvariabler. I de fleste tilfeller er ikke all variasjon
relevant for regresjon, dvs. bare en viss mengde variasjonen i prediktorene
er relevante, og bare for en del av variasjonen i responsen. Dette fører
til en reduksjon av den lineære regresjonsmodellen der man kan forestille
seg et underrom av rommet som spennesut av prediktorvariablene som
inneholder all relevant informasjon for et underrom av rommet spent ut av
responsvariablene.

I denne avhandlingenprøver vi å sammenligne noen nye metoder som
er basert på Envelopemodellen og noen etablerte metoder som principal
komponent regresjon (PCR) og partiell minste kvadraters regresjon (PLS).
Sammenligningen tester disse metodene på deres ytelse til å produsere
minimum prediksjon- og estimeringsfeil, mens modelleringsdata simuleres
med spesielt designede egenskaper. For simuleringen har vi også laget en
R-pakke kalt simrel med et webgrensesnitt.

En simuleringsmodell for multirespons, multivariat lineær modell, som
simuleringsverktøyet bygger på, diskuteres i den første artikkelen. Denne
artikkelen utarbeider et grunnleggende fundament for simuleringene ba-
sert på konseptet om reduksjon av regresjonsmodeller. Den andre artikke-
len diskuterer likhetene i Envelope-, PCR- og PLS-populasjonsmodellene.
Denne artikkelen sammenligner prediksjonsytelsen til flere multivariate
metoder ved bruk av en modell med en enkelt respons.

De to siste artiklene gir en grundig evaluering av prediksjons- og esti-
meringsegenskapene til etablerte metoder (PCR, PLS1 og PLS2) og ny-
utviklede envelope-baserte metoder (Xenv og Senv). Ikke uventet fant stu-
dien at det ikke finnes en enkelt metode som dominerer i alle situasjoner,
men resultatene deres avhenger av egenskapene til dataene de modellerer.
Imidlertid har envelope-baserte metoder vist bemerkelsesverdig resultater
i mange tilfeller, både når det gjelder prediksjon og estimering. Studien
anbefaler også forskere å bruke og evaluere envelope-metodene.
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P R E FA C E

This thesis is a part of Doctor of Philosophy (PhD) study. The first part
of the thesis constitute a gentle introduction to the objective of the study
and some of its background. This is followed by the summary of individual
research paper on which this thesis is based on. The discussion section
tries to bind the finding from theses papers. The final chapter will discuss
the limitations and future prospect of the study. The second part contains
all the papers attached.

An R-package called simrel is available as part of the first paper in-
cluded in this thesis. The package lets users simulate data from a multi-
response linear model. The package can be installed from R-package
repository CRAN or from GitHub. In addition, a web application that
gives users a graphical user interface for the package is also available
from GitHub. All the results and the documentations of the research can
be reproduced from the codes in GitHub repository with software and pack-
ages required installed. In addition, one can use docker image together
with the code for reproducing the thesis together with all included papers.
All related resources are listed in the final chapter.
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I N T R O D U C T I O N

Rapid development in technology and computational power have resulted
in heaps of data. Extracting information from this chaotic heaps of data has
become another problem. Many statistical and machine learning tools are
devised for this purpose, most of which focus to identify the relationships
between different variables. A linear relationship is the most common
assumption. This thesis confined itself in the exploration of linear rela-
tionships, where a set of independent variables, called predictor variables,
affect another set of dependent variables, called response variables. The
space spanned by the columns of predictors and responses are termed
predictor space and response space, respectively.

Many projection-based statistical methods such as Principal Compo-
nents Regression (PCR), Partial Least Squares (PLS) Regression and
some variants of Envelopes only consider a subspace of predictor space
relevant for defining the linear relationship between the predictors and
the response(s). This brings us to the concept of relevant and irrelevant
space introduced by Naes and Martens [1985]. The relevant space can
be described as the subspace that contains all the required information to
define the relationship between the predictors and the response in a model.
The irrelevant space, on the other hand, does not contain any information
regarding this relationship.

Latent components corresponding to predictor variables, which we will
refer to as “predictor components”, are linear combinations of the predictor
variables. Naes and Martens [1985] and later Helland [1990], Næs and
Helland [1993] and Helland and Almøy [1994] have defined a set of predic-
tor components as irrelevant components if they have no correlation with
the response variables and the relevant part. Using only a subset of the
latent components for modeling, is often termed as “dimension reduction”.
Methods like PCR, PLS and many other variants of PLS has leveraged this
concept and are serving as prime tools in many disciplines, most notably
in chemometrics.

Relatively new methods based on the concept of “envelopes” introduced
by Cook et al. [2007], more specifically envelope in predictor variable

1
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2 introduction

(Xenv), have also used this concept of dimension reduction. In addition, en-
velope in response variable (Yenv) and simultaneous envelope in predictor
and response (Senv) have extended the concept of relevant and irrelevant
space to the response space as well, which they referred to as material
and immaterial part. These methods are discussed in Background section.

Despite having similar underlying population model, these methods es-
timate the model parameters differently. Model parameters are the un-
knowns, which help to define a complex relationships between the variables.
Regression coefficient vector (β) in (2) is an example of a model parameter.
All methods use data to estimate these parameters. So, the properties of a
dataset affect the estimation and consequently the prediction performance
of the methods. Evaluation of these methods is essential to understand
how they interact with various properties of the data. This thesis will
explore some of these methods and assess their estimative and predictive
strength and weaknesses through both simulated and real datasets.

This exploration adds a reference for researchers to motivate them for
using different methods based on the properties of the data they are work-
ing on. This study is exploratory in nature where we assess and compare
different multi-response multivariate methods, but most importantly study
their interaction with the properties of the data. The properties include
the correlation between predictor variables, the position of principal com-
ponents of predictor variables (predictor components) that are relevant for
certain principal components of the response variables (response compo-
nents), the amount of correlation between the response variables and the
number of predictor variables. The effect of the correlation structure of
the response matrix is less explored and it is expected to shed some light
on how similar and how different the methods are in terms of modelling
this structure. In order to simulate data with these properties varying at
different levels, we have created an R-package called simrel, which is
an extension of the previous version introduced by Sæbø et al. [2015] to
incorporate multiple responses.
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B A C KG R O U N D

This section discusses the relevant topics that have been used in the
included papers.

Multivariate Linear Regression Model

The joint normal distribution of a random variable-vector y of m response
variables with mean of µy and another random variable-vector x of p
predictor variables with mean µx as,

[
y
x

]
∼ N

([
µy
µx

]
,
[
Σyy Σyx

Σxy Σxx

])
(1)

where Σxx and Σyy are the variance-covariance matrices of x and y,
respectively, and Σxy = Σtyx is the covariances between them.

A model that linearly relates x and y through regression coefficient
vector β is often written as,

y = µy +β
t (x − µx) + ε (2)

where ε ∼ N
(
0,Σy|x

)

We can write the regression coefficient β = Σ−1
xxΣxy in terms of the

covariance matrices. A complete simulation of this model requires to
specify 1/2(p+m)(p+m+ 1) unknowns.

With a transformation defined as z = Rx and w = Qy with Rp×p and
Qm×m as random orthogonal rotation matrices, model (1) can be rewritten
as,

[
w
z

]
∼ N (µ,Σ) = N

([
µw
µz

]
,
[
Σww Σwz
Σzw Σzz

])

= N

([
Qµy
Rµx

]
,
[
QΣyyQ

t QΣyxRt

RΣxyQ
t RΣxxRt

])
(3)

3
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4 background

Since both Q and R are orthonormal matrices, i.e., QtQ = Im and
RtR = Ip, the inverse transformation can be defined as,

Σyy = QtΣwwQ Σyx = QtΣwzR
Σxy = RtΣzwQ Σxx = RtΣzzR

(4)

Here, Σzz and Σww are diagonal matrices of eigenvalues corresponding
to predictors and responses respectively. Following the concept of relevant
components Σwz = Σtzw has non-zero elements for relevant components.
With some random orthogonal rotation matrices R and Q, which can be
easily generated, the unknowns required for simulation may drastically
decrease. Following the idea from Sæbø et al. [2015], Paper I uses expo-
nential decay of eigenvalues, as in (5), that fills the diagonals of Σzz and
Σww. Here the decay factor γ controls the multicollinearity such that a
higher value of gamma corresponds to high multicollinearity.

λi = e
−γ(i−1),γ > 0 and i = 1, 2, . . . ,p (5)

A thorough discussion on the reparameterization of a linear model to sim-
ulate data by the concept of “relevant components” can be found in Paper
I. The following subsection discusses the concept of relevant components
in brief.

Relevant Space and Relevant Components

In the model (1), not all information in x is relevant for y and not all
variation in y is explainable or non-redundant. We can refer to the space
“with information” as relevant (informative) space and the rest as irrelevant
(uninformative) space. Naes and Martens [1985] introduced the definition
of relevant space as the decomposition of the predictor space into two
orthogonal subspaces: the relevant and the irrelevant space. Additionally,
a set of predictor components defined as irrelevant components do not
have any correlation with the response and the relevant part of the data.
The relevant components, on the other hand, contains all the required
information to explain the variation in the response y. Multivariate meth-
ods such as Principal Components Regression (PCR) and Partial Least
Squares (PLS) Regression uses the eigenvectors to span the relevant and
irrelevant spaces. Here, we refer the eigenvectors that span the relevant
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space as relevant eigenvectors. The concept was further discussed and
developed by Helland [1990], Næs and Helland [1993] and Helland and
Almøy [1994]. However, all these studies have discussed the separation of
relevant and irrelevant space only in the predictor space.

More recently, various estimators [Cook et al., 2010, 2013, Cook and
Zhang, 2015b] based on a so-called “envelope” [Cook et al., 2007] have
used and extended the concepts of the separation of relevant and irrelevant
spaces to the response space as well. The relevant and irrelevant spaces
are referred to as material and immaterial spaces in their literature (Figure
1). The envelope methods use “envelope”, a linear combination of relevant
eigenvectors [Cook, 2018], to span the relevant space.

Relevant space within a model
A concept for reduction of regression models

Response (Y) Predictor (X)

Redundant Y
information

Irrelevant X−Space
 redundant information and noise

X and Y envelope/
 Relevant Spaces

Figure 1: A heuristic illustration of relevant and irrelevant spaces in a re-
sponse space and a predictor space

To elaborate on the concept of relevant components and how they inter-
act with other properties and influence the prediction of methods, let us
consider an example. Assume a single response model with 10 predictor
variables where the information contained in these 10 predictors can be
completely explained by four principal components of Σxx, the variance-
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6 background

covariance matrix of the predictor (x). These four components are the
relevant components. Consider two cases:

case 1 (figure 2, left): The position of these relevant components
are 1, 2, 3 and 4. The eigenvalues of Σxx decay slowly, i.e. low
multicollinearity. Here, the relevant components from 1 to 4 have
large variation, so that, most methods easily extract the information
and fit the model quite accurately.

case 2 (figure 2, right): The position of the relevant components are
at 5, 6, 7 and 8. The eigenvalues of Σxx decay rapidly, i.e. high
multicollinearity. Here the relevant components from 5 to 8 have
small variation, so that, it is difficult for most methods to extract the
information and fit the model.

●
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● ● ● ● ● ● ● ● ● ●

●

●

●

●

● ●

Case1: Low Multicollinearity
Large Variance Relevant Components at 1:4

Case2: High Multicollinearity
Small Variance Relevant Components at 5:8
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Covariance between Predictor Components and Responses

Figure 2: Relevant components at two different set of positions and two dif-
ferent levels of multicollinearity. The points represents the correla-
tion of predictor components and the response variable. The grey
bars are the eigenvalues of Σxx.

Further, PCR and PLS regression are used with the data simulated
from these two cases. Also, leave-one-out cross-validation validates their
prediction performance, and the root mean squares error of prediction
measures their prediction error (Figure 3).

Different methods target these cases differently. For example, PCR
tries to capture maximum variation in x through principal components, so it
starts reducing its prediction error only after including the relevant compo-
nents. For this method, in the first case, prediction error starts decreasing
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from the first component on, and stabilize after the fourth component while
in the second case, prediction error only starts decreasing after the fifth
component. This method requires all four relevant components to get the
minimum prediction error. Partial Least Square Regression (PLS), on the
other hand, is motivated to maximize the covariance between the predictors
and the response. We can see a significant decline of prediction error after
the first relevant components is included but it uses fewer components
to get the minimum prediction error than PCR in both cases. Helland
and Almøy [1994] has shown a similar result and shown that the relevant
components with small variation make the prediction difficult.
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Figure 3: Root mean square error of cross-validation from PCR and PLSR

The concept of relevant components can also be extended to the response
such that a subspace contains the information relevant for a model. The
concept is implemented in the simultaneous envelope [Cook and Zhang,
2015b] and the response envelope [Cook et al., 2010] methods.
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Simulation

Random variables are the basic components of a complex model and a
stochastic simulation. These random variables can be generated on a
computer by sampling and manipulating uniform random variables U(0, 1)
which requires random numbers. Although computers can not generate
truly random numbers, it can, however, generate pseudo-random numbers.
These numbers appear as random numbers but they are completely de-
terministic. Since they are deterministic, any experiment performed using
these numbers can be repeated exactly [Jones et al., 2014]. We can use
these uniform random variables to create other random variables that follow
a certain distribution. Standard Normal Distribution is a common one and
is used in many statistical simulations including the tool discussed in paper
I. Given that we can simulate a standard normal variable z, one can obtain
any normal distribution with arbitrary mean µ and variance σ2 as µ+ σZ.
Here, we can control the parameters µ and σ.

Simulation refers to generating data from a known underlying popula-
tion structure. Controlling the properties of the population is vital in the
simulation. This enables researchers and users to use data for comparison
of methods, assessing new methodology, testing theory and evaluating
algorithms. Such data can also be used for educational purposes.

All the research studies in this thesis have used an R-package called
simrel for simulating multi-response linear model data (paper I). The
simulation tool is general purpose in nature and has a limited number of
parameters that controls the essential properties of the population. It is
flexible and enables users to simulate data with a wide range of properties.
Some of these properties include the level of correlation between the
predictors (gamma) and responses (eta) through exponential decay factor
as in (5). The position of the relevant components (relpos), the number of
predictor variables (p) and the number of response variables (m) can also
be controlled during the simulation.

Estimation and Prediction

Measures such as mean and standard deviation for a population are usually
referred to as parameters of the population. A model as in (2), which
expresses the relationship between x and y in the population, uses param-
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eters such as the error variance and regression coefficients. Usually, due
to the lack of known population distribution, the values of these parameters
are calculated using a sample collected from the population. The process
of determining the value of certain parameters is called estimation. The es-
timated parameter values from any two samples are different. A method for
estimation is considered better if the expected squared difference between
the estimated and true value is small and has small variance. The goodness
of estimation method depends on the nature of the data. Estimation error
with true and estimated regression coefficient β and β̂ respectively, can
be defined as in (6).

Estimation Error = E
[(
β− β̂

)t (
β− β̂

)]
(6)

A fitted or trained model is mostly used for prediction. Prediction refers
to determining the value of the response for a new set of predictors, which
were not used to train the model. Most studies under “data science” field
are targeted for better prediction. Most comparisons in this thesis evaluate
the prediction performance of the multivariate methods using the prediction
error measured as in (7).

Prediction Error = E
[(
β− β̂

)t
Σxx

(
β− β̂

)]
+Σy|x (7)

From (6) and (7), we can see that the prediction errors are influenced by
the covariance of the predictors directly, while estimation error is not. In
the case of multicollinear predictors, estimation error can be huge, while
due to the scaling of the covariation of predictors, the prediction error
can still be small. A good estimation can give a proper and trustworthy
idea about the relation between certain predictor variation with a certain
response variable. This is important in policymaking, academic researches
and to understand the relationships when developing new models. Predic-
tion, on the other hand, is widely used from weather forecasting, economic
forecasting, prediction in production and sales, and many more.

Multivariate Methods

Various multivariate methods such as ordinary least squares (OLS), princi-
pal components regression (PCR), partial least squares (PLS) regression
and envelope methods are used for comparative studies included in this
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thesis. All of these methods except OLS use the concept of relevant space
and the reduction of the regression model. Here we will refer PLS2,
which models all the response variables together, as PLS and PLS1, which
models each responses separately, as PLS1.

Methods based on Envelope Model

Three different methods based on envelopes are also included for compar-
ison. Cook et al. [2007] defined envelope as the smallest subspace that
includes the span of true regression coefficients and developed various es-
timators based on the concept of the envelope through various subsequent
papers. Response envelope (Yenv) [Cook et al., 2010] performs dimension
reduction only in the response space while Predictor envelope (Xenv) [Cook
et al., 2013] performs dimension reduction only in the predictor space. The
simultaneous envelope (Senv) [Cook and Zhang, 2015b] performs dimension
reduction on both predictor and response space simultaneously. If all the
possible components (latent dimension) are included in these methods,
the results are equivalent to OLS regression. The comparisons of these
envelope methods together with PCR and PLS in the third and fourth
paper have shown encouraging results for envelope methods in both easy
and difficult cases.

PLS and its derivatives

Since the PLS method has been both popular and productive in fields like
chemometrics, its development has progressed quickly over time through
the formulation of various derivatives. CPLS and CPPLS are among them
which combines PLS and canonical correlation analysis (CCA) and give a
joint framework for classification and regression [Indahl et al., 2009]. Paper-
I has made some basic comparison of these methods for their predictive
ability. More recently, Helland et al. [2012]] introduced the Bayes PLS
method. The method only works with a single response model and has
shown promising results compared to other methods in Paper-II.

Wentzell and Montoto [2003] has assembled many comparisons made
on PCR and PLS where they conclude that PLS has not shown a clear
advantage over PCR over predictive ability in most studies, but uses fewer
components than PCR. Many studies are available comparing PCR, PLS
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and their derivatives. However, there are not any studies to date which
have made any empirical comparisons of the newly developed envelope
based methods using real and simulated data with these more established
methods.

Details on each of these methods can be obtained from the corresponding
references.

Experimental Design

In all the post hoc comparisons, simulation parameters are considered as
independent variables (factors), and the prediction- and estimation errors
are considered as outcome variables (responses). Factorial Design is
implemented as an experimental design which allowed us to compare all
possible combination of different factor levels. For example, the factorial
design used throughout the third and fourth paper, shown in Figure 4, has
four factors: a) Number of predictor variables (p) with two levels, b) level
of multicollinearity (gamma) with two levels, where higher value represents
a higher level of multicollinearity, c) position index of relevant predictor
components (relpos) and d) the level of collinearity in response (eta), with
four levels where higher value represents a higher correlation between the
response variables. The combination of these factors has created 32 unique
designs which are then used for simulating data with those particular
properties. Such data, with all possible combination of these properties,
have made both thorough and rigorous comparison possible.

Warning: Vectorized input to ‘element_text()‘ is not officially supported.

Results may be unexpected or may change in future versions of ggplot2.

Let us dig a little deeper to understand how these simulation parameters
are tied with the properties of the simulated data. As an example, let us
take Design 1 and Design 9 of Figure 4 where data simulated with Design
1 have low multicollinearity and the position index of relevant components
are 1, 2, 3, 4, while Design 9 have high multicollinearity and the position
index of relevant components are 5, 6, 7, 8. With other factors or properties
of the data being the same for both, the difference in these two designs
help us to analyse the interaction between the multicollinearity in the
data and the position of relevant components on, for instance, prediction
performance of the methods.
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Figure 4: An example of a factorial design used in the third and fourth paper.

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

n: 100, R2: 0.8

● ● ● ●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ●● ● ● ●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ●● ● ● ●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ●● ● ● ●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ●

n: 100, R2: 0.8

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

● ●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

● ●
●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

● ●

●
●

● ●

●

●

●
●

●

● ● ●

n: 100, R2: 0.8

●

●

●

●

●

●
●

●

● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ●

●

●
● ●

●

● ●

●

● ●
● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ●

n: 100, R2: 0.8

Population Sample

D
esign1

1, 2, 3, 4 | 0.2
D

esign9
5, 6, 7, 8 | 0.9

0 5 10 15 20 0 5 10 15 20

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Components

A
bs

ol
ut

e 
C

ov
ar

ia
nc

es

Response Variable ● ● ● ●1 2 3 4

High/Low Multicollinearity with near/far relevant predictors

Covariance between Predictor Components and Responses

Figure 5: Design 1: Relevant components have large variation, Design 9: ir-
relevant components have large variation and relevant components
have small variation.

Figure 5 (top-row) shows the scaled covariance between the predictor
components and the response variables for Design 1. Here the relevant
components with larger variation (due to low multicollinearity) simulate
data that are easier to model by most methods. Figure 5 (bottom-row)
for Design 9 shows that the relevant components at position 5, 6, 7, 8
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have small variation and irrelevant components at position 1, 2, 3, 4 have
large variation. This design simulates data that are difficult to model by
most methods. The population covariances in the figure give clear and
distinct relationship, while the sample covariances give a somewhat rough
approximation of the population.

Analysis of Variance

The analysis in these studies have used various exploratory plots of pre-
diction error, estimation error and the number of components used by
different methods. Also, visualizations from principal components analysis
(PCA) have been used on these errors. Besides, a more formal analysis is
made using analysis of variance (ANOVA). ANOVA allowed us not only to
understand the effect of various properties of data controlled by the sim-
ulation parameters but also analyses the effect of the interaction of these
properties with the methods. The third and fourth paper use multivariate
analysis of variance (MANOVA) to analyze the effect on four response
variables.

MANOVA is the multivariate counterpart of the ANOVA where various
test statistic are used, such as Wilks’ Lambda, Lawley-Hotelling trace,
Pillai trace and Roy’s largest root. All of these methods use the within
(E) and between (H) sum of squares and the cross products matrices. All
four test statistic are nearly equivalent for large sample size [Johnson and
Wichern, 2018]. In our studies, Pillai trace is used, which is defined as,

Pillai statistic = tr
[
(E+H)−1H

]
=

m∑
i=1

νi
1+ νi

(8)

where, νi represents the eigenvalues corresponding to E−1H.
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PA P E R S U M M A R Y

Paper 1: A Tool for Simulating Multi Response Linear Model
Data

As an extension of Sæbø et al. [2015] to simulate linear model data with
multiple response variables, this paper discusses the simulation model, the
strategy for simulation, and compares some multivariate methods using
simulated data. Additionally, it includes an R-package called simrel that
is built based on the mathematical formulation discussed in the paper.

The simulation of the linear model discussed here is based on the con-
cept of the relevant components. A subspace of the predictor space, which
is relevant for a subspace of response space, is the basis of the simulation
tool. These subspaces are assumed to be spanned by a subset of respective
latent components. The simulation strategy started with identifying the
covariance between these components that satisfy the user’s condition for
the data, i.e. the simulation parameters. A covariance structure of the latent
space is then created which is rotated by an arbitrary orthogonal rotation
matrix to obtain the population covariance structure of the simulated data.
Data is then sampled from a normal distribution with the constructed
covariance structure. The tool also provides mathematically computed
properties of the data such as true regression coefficient, minimum model
error, coefficient of determination and the predictor variables relevant for
a given response.

In addition to the mathematical formulation for simulation, the study
compares some multivariate methods including OLS, PCR, PLS and Enve-
lope using two simulation examples. It has included some derivatives of
PLS such as PLS1, PLS2, CPLS and CPPLS and some methods based on
envelope estimation such as Xenv, Yenv and Senv. The first example has
three relevant response components rotated into five response variables.
Additionally, four simulation designs were constructed using factorial de-
sign with low and high multicollinearity interacting with low and high noise
levels. The simultaneous envelope (Senv) method has achieved the small-
est prediction error with a smaller number of components in the dataset

15
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16 paper summary

with low noise level (high coefficient of determination), while canonical
PLS (CPLS and CPPLS) have shown better performance in the dataset
with a higher level of noise. All the methods are found robust for the
multicollinearity problem. The second example compares PLS1 and PLS2
where, on most occasions, the latter dominates the earlier with regard
to minimum prediction error. Further, the paper has also introduced the
shiny [Chang et al., 2018] web application designed for easier access to
the simulation tool.

Paper 2: Model and Estimators for PLS Regression

Comparison of methods requires us to understand the modelling approach
of the corresponding methods. This paper formulates five different ways to
present a PLS model [Helland, 1990] and shows how they are equivalent.
Additionally, it argues that the concept of relevant components for reduc-
tion of the regression model is the simplest way for it. My contribution to
the paper was to compare the performance of PCR, PLS, Bayes PLS and
Envelope (Xenv) methods using both simulated and real data.

The comparison was based on simulated data with 32 unique properties
through a factorial design of simulation parameters. The parameters in-
clude medium and high levels of coefficient of determination, medium and
high levels of multicollinearity, four different position index of relevant
predictor components and two different n/p ratios, 0.3 and 0.8. The study
is based on a single response model.

The study found some interesting results for the envelope and Bayes
PLS methods. Since the Envelope (Xenv) method is based on maximum
likelihood, the designs with n/p ratio equals to 0.8 destroyed its prediction
while the method has fine prediction when the ratio was 0.3. Bayes PLS
has shown remarkable prediction performance in most design, however,
both methods had convergence problem in many situations.

Despite having the best performance, Bayes PLS has time-consuming
computation and failed to converge for some cases. For practical purpose,
the study recommends the ordinary PLS algorithm as a good option for
prediction purpose.
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Paper 3: Comparison of Multi Response Prediction Methods

Since prediction has been an essential component in data science, un-
derstanding how the prediction methods interact with different properties
of data is important. This paper, together with the next, makes a com-
prehensive comparison using simulated data with specifically designed
properties through various simulation parameters. The experimental de-
sign in Figure 4, discussed in the previous section, has been used in both
of these comparisons. Besides, for the prediction comparison, two real
data examples have also been used in the study. These two papers try
to give an understanding of the interaction between methods and data
properties in multi-response cases and also assess the performance of the
envelope methods (Xenv and Senv) using both simulation and data from the
field of chemometrics. Further, these studies not only use prediction and
estimation error for assessment but also the number of components used
to get the minimum error. Here only methods based on relevant space
such as PCR, PLS (PLS1 and PLS2) and Envelopes (Xenv and Senv) are
considered for comparison.

Since envelope methods are unable to fit a model with p > n, principal
components of the predictor matrix were used to reduce the number of
predictors. The number of components that explains the minimum of 97.5%
of the variation in x are chosen. The regression coefficients were later
transformed back using the respective eigenvectors. Since the envelope
methods reduce the dimension as part of its fitting process, this detour in
p > n cases does not give them extra benefit which we have tested for
n > p cases using with and without principal components. This paper
also illustrates the use of principal components for implementing envelope
methods in data with wide (p > n) predictor matrix which is common in
fields like chemometrics and bioinformatics.

The minimum prediction error and the number of components to get
that error are considered as observed responses in the study. The sim-
ulation parameters used in the experimental design are considered as
factor variables for further statistical analysis. Multivariate Analysis of
Variance (MANOVA) is used for proper statistical analysis with third-order
interaction of these factors. The effect of different levels of the factors and
their interactions are used for minute comparison.

Envelope methods in the study have produced a small prediction error
using fewer components than other methods. The effect of correlation



i
i

“Thesis” — 2019/10/8 — 23:16 — page 18 — #30 i
i

i
i

i
i

18 paper summary

between the response variables is small for all methods, however, envelope
methods are more sensitive to this correlation. All methods are robust
for handling multicollinearity, but PCR and PLS methods struggle more
when the relevant predictor components have small variance and irrelevant
components have a large variance.

Example with real data shows PCR and PLS have the smallest predic-
tion error, but the number of components used by these is higher than the
envelope methods. Envelope methods in these examples have obtained
prediction error closer to the minimum obtained by PCR and PLS, but
using a smaller number of components.

Paper 4: Comparison of Multi Response Estimation Methods

In many disciplines, the correct and stable estimation is just as an impor-
tant primary objective as the prediction. This paper extends the analysis
from Paper 3 to analyze the estimation aspect of the methods. The same
experimental design and simulated data are used for this assessment as
well.

The study found that overall performance highly depends on the nature
of the data since simulation parameters, such as multicollinearity level
and position of relevant predictors significantly interact with the methods.
Since both envelope methods have smaller prediction and estimation error
and have used fewer number of components, low multicollinearity with
independent response variables are in favour of these methods. Higher
correlations between the responses have given a larger estimation error
for envelope methods. For these methods, choosing the wrong number of
components can result in large estimation error, so the study also suggests
using validation for estimation purpose. Both prediction and estimation
error from PCR are more stable than other methods, while as PLS1 method
models each response separately, the performance in general is poorer than
other methods.
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D I S C U S S I O N S & C O N C L U S I O N S

Simulated data are used in many scientific studies and teaching purposes.
Assessing the properties of methods or algorithms is essential and usual in
the scientific community. Since scientists often spend a lot of time develop-
ing a simulation model, paper-I attempts to present a simple, versatile and
general-purpose tool for simulating such data only using few parameters.
This attempt of adding a tool in scientists’ toolbox aims at making the
laborious work of researchers simpler and less time-consuming. Although
not discussed much in the paper, the tool can also be useful for teaching
purposes. Using the tool, educators can easily simulate data based on
their context and need.

Most of our comparisons are on the methods that are based on the
concept of relevant spaces. The study in paper-II helped us to understand
the similarities and differences between these methods. My contribution
to the second part of the paper was to use the simulation tool discussed
in paper-I to compare these methods empirically. The Bayes PLS method
has shown the best performance in these simulation results, and its per-
formance on real data was satisfactory. This pointed us to explore the
methods comprehensively. However, due to the time-consuming computa-
tion and as the Bayes PLS method has not yet been developed to work
with multiple responses, we planned to use only the envelope methods,
PCR and PLS for further exploration.

The further exploration continued on the multi-response setting for eval-
uating and comparing PCR, PLS and two envelope methods (Xenv and
Senv) for their performance on prediction and estimation. These methods
are capable of modelling multi-response models and are based on the
concept of relevant space and dimension reduction.

Prediction and estimation both have many aspects to be discussed, we
have divided the comparison study into two papers: Paper-III and Paper-
IV. Since both papers use the same simulated data based on the same
experimental design, it became easier to make comparisons of prediction
and estimation for individual methods.

19
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Since multicollinearity highly interacts with the position of the principal
components, these factors highly influence both estimation and prediction.
These factors were used as simulation parameters in addition to a factor
that controls the correlation between the response variables. The study on
the response correlation and its interaction with these methods and other
simulation parameters are limited. This studies’ attempts to fill up the gap
have made this thesis novel and useful.

In the last two papers, Envelope methods have shown fine performance,
specifically in the simulation examples. The PCR method has shown good
performance if an optimal number of component is used. The performance
is also stable, even with non-optimal number of components. Both PLS1
and PLS2 have stable and better performance, particularly when relevant
components are at the initial position (i.e. with large variation). The fine
performance of envelope methods is achieved using a smaller number of
components, which shows its remarkable strength in dimension reduction.
An optimal number of components is crucial for the Envelope methods than
for the PCR and PLS methods, as the estimation error rapidly increases
with an increasing number of non-optimal components.

In general, the study encourages researchers for using newly developed
methods such as the envelope. This kind of comparisons in chemometrics
data is relatively new for both chemometrics fields and the envelope meth-
ods. This thesis also hopes to be a useful reference for other researchers.

Since Envelope methods have dimension reduction in response, it can
be useful when many responses can be explained by fewer response com-
ponents. Not a single method is superior for all kinds of data, and using
methods correctly requires identifying the properties of data. More so-
phisticated assessment and comparison can be possible through the tool
simrel. Researchers are encouraged to leverage the tool for their study
and experiments. We would like to request the developer of the envelope
to reach different fields and spread the envelope in a more simple and less
mathematical form of communication.
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L I M I TAT I O N S & F U T U R E
P E R S P E C T I V E S
Although the studies in the thesis are all comparisons of methods, it is
important to make those comparisons to evaluate the methods and to
understand their interaction with various properties that can exist in real
data. This provides an example assessment for method developers and
gives a clear understanding of the methods under comparisons for these
specific cases to other researchers.

The study mostly covers the comparisons through simulated data and
some real data, but it also provides a direction for further exploration of
these methods and other methods. Ridge, Lasso and other methods could
have been used for comparison, but since they are not explicitly based on
the concept of relevant components, we have discarded them from these
comparisons at this point. Although we did some basic comparison by
including them, they require a separate and a more comprehensive study.

These studies are highly based on simulated data and somewhat on
real data, it could also have been extended to the comparison of their
mathematical formulation. This has been done, to some extent, in the
second paper for a single response case but the simultaneous envelope
and multi-response case need a separate study.

In the current state, the simulation tool assumes that the predictor com-
ponents relevant for one response component are not relevant for others.
This can be further studied and can be extended to simulate a more general
data structure. Additionally, due to the rise in the popularity of machine
learning methods, a similar comparative study of statistical and machine
learning methods is also recommended as a future perspective of this study.

21
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TO O L S A N D R E S O U R C E S

r-package:
https://github.com/simulatr/simrel

shiny application:
https://github.com/simulatr/AppSimulatr

thesis github repository:
https://github.com/therimalaya/Thesis

paper 1:
https://github.com/therimalaya/simrel-m

paper 2:
https://github.com/therimalaya/model-comparison-paper

paper 3:
https://github.com/therimalaya/03-prediction-comparison

paper 4:
https://github.com/therimalaya/04-estimation-comparison
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A B S T R A C T

Data science is generating enormous amounts of data, and new and advanced analytical methods are constantly
being developed to cope with the challenge of extracting information from such “big-data”. Researchers often use
simulated data to assess and document the properties of these new methods, and in this paper we present an
extension to the R-package simrel, which is a versatile and transparent tool for simulating linear model data with
an extensive range of adjustable properties. The method is based on the concept of relevant components, and is
equivalent to the newly developed envelope model. It is a multi-response extension of R-package simrel which is
available in R-package repository CRAN, and as simrel the new approach is essentially based on random rotations
of latent relevant components to obtain a predictor matrix X, but in addition we introduce random rotations of
latent components spanning a response space in order to obtain a multivariate response matrix Y. The properties
of the linear relation between X and Y are defined by a small set of input parameters which allow versatile and
adjustable simulations. Sub-space rotations also allow for generating data suitable for testing variable selection
methods in multi-response settings. The method is implemented as an update to the R-package simrel.

1. Introduction

Technological advancement has opened a door for complex and so-
phisticated scientific experiments that were not possible before. Due to
this change, enormous amounts of raw data are generated which contain
massive information but is difficult to excavate. Finding information and
performing scientific research on these raw data has now become another
problem. In order to tackle this situation new methods are being devel-
oped. However, before implementing any method, it is essential to test its
performance and explore its properties. Often, researchers use simulated
data for the purpose which itself is a time-consuming process. The main
focus of this paper is to present a simulation method, along with an
extension to the r-package called simrel, that is versatile in nature and yet
simple to use.

The simulation method we are presenting here is based on the prin-
ciple of relevant space for prediction [13] which assumes that there exists
a y-relevant subspace in the complete space of predictor variables that is
spanned by a subset of eigenvectors of these predictor variables. Our
extension to this principle is to introduce a subspace in y (material space)
which contains the information that predictor space is relevant for. The
concept of response reduction to the material space in response variable
was introduced by Cook et al. [6]. Our r-package based on this principle

lets the user specify various population properties such as; which latent
components in x are relevant for a latent subspace of the responses y and
the collinearity structure of x. This enables the possibility to construct
data for evaluating estimation methods and methods developed for
variable selection.

Among several publications on simulation, Johnson [16]; Ripley [17]
and Gamerman and Lopes [9] have exhaustively discussed the topic. In
particular, methods based on covariance structure has been discussed by
Arteaga and Ferrer [2]; Arteaga and Ferrer [3] and Camacho [4],
following approaches to find simulated data satisfying the desired cor-
relation structure. In addition, many publications have implemented
simulated data in order to investigate new estimation methods and pre-
diction strategies [see:8, 5, 14]. However, most of the simulations in
these studies were developed to address their specific problem. A sys-
tematic tool for simulating linear model data with single response, which
could serve as a general tool for all such comparisons, was presented in
Sæbøet al. [19] and as the r-package simrel. This paper extends simrel in
order to simulate linear model data with multivariate response. The
github repository of the package at http://github.com/simulatr/simrel
has rich documentation with many examples and cases along with
detailed descriptions of simulation parameters. In the following two
sections, the discussion encircle the mathematical framework behind. In
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addition, in section 4 and 5? we have also discussed the input parameters
needed for simrel function in brief. In section 4, an implementation is
presented as a case example and the final section introduces the shiny
web application for this tool.

2. Statistical model

In this section we describe the model and the model parameterization
which is assumed throughout this paper. We assume:
!
y
x

"
! N

#!
μy
μx

"
;

!
Σyy Σyx

Σt
yx Σxx

"$
(1)

where, y is a response vector with m response variables y1; y2;…ym with

mean vector μy , and x is vector of p predictor variables with mean vector
μx. Further,

Σyyðm# mÞis the variance-covariance matrix of y
Σxxðp# pÞis the variance-covariance matrix of variables x
Σyxðm# pÞis the matrix of covariance between x and y

Standard theory in multivariate statistics may be used to show that y
conditioned on x corresponds to the linear model,

y ¼ μy þ βtðx' μxÞ þ ε (2)

where, βt is a ðm# pÞ matrix of regression coefficients, and ε is an error
term such that ε ! Nð0;ΣyjxÞ. The properties of the linear model (2) can
be expressed in terms of covariance matrices in (1).

Regression Coefficients The matrix of regression coefficients is
given by

β ¼ Σ'1
xx Σxy

Coefficient of Determination Since, a matrix of coefficient-of-
determination represents the proportion of variation explained by the
predictors, we can write this matrix by its elements as,

Fig. 1. Simulation of predictor and response variables after orthogonal transformation of predictor and response components by rotation matrices Q and R shown as
the upper left and the lower right block matrices in (b).

Fig. 2. Simulated data before and after
rotation.

Table 1
Parameter setting of simulated data for comparison of estimation methods.

Decay of eigenvalues ðγÞ Coef. of Determination ðρ2wj
Þ

Design1 0.2 0.8, 0.8, 0.4
Design2 0.8 0.8, 0.8, 0.4
Design3 0.2 0.4, 0.4, 0.4
Design4 0.8 0.4, 0.4, 0.4

R. Rimal et al. Chemometrics and Intelligent Laboratory Systems 176 (2018) 1–10
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ρ2y
&

jj0
¼

σt
xyjΣ

'1
xx σxyj0ffiffiffiffiffiffiffiffiffiffiffiffi
σ2yjσ

2
yj0

q 8j; j0 ¼ 1…m

where, σxyj , σxyj0 are covariances between x and yj, yj0 respectively. Also,
σ2yj and σ2yj0 are unconditional variances of yj and yj0 .Here the numerator is

equivalent to the covariance of fitted y in sample space. if j ¼ j0, it cor-
responds to a population version of the mean sum of squares of regres-
sion. The denominator gives the total unconditional variation in y. The
diagonal elements of this matrix is the proportion of variation in a
response yj; j ¼ 1;…m explained by the predictors.

Conditional variance The conditional variance-covariance matrix of
y given x is,

Σyjx ¼ Σyy ' ΣyxΣ'1
xx Σxy:

The diagonal elements of this matrix equals the minimum least
squared error of prediction ½Eðy ' byÞ2) for each of the response variables.

Let us define a transformation of x and y as, z ¼ Rx and w ¼ Qy.
Here, Rp#p and Qm#m are rotation matrices that rotate x and y to yield z
and w, respectively. The model (1) can be re-expressed in terms of these
transformed variables as:

"
w

z

#
! Nðμ;ΣÞ ¼ N

 "
μw
μz

#
;

"
Σww Σwz

Σzw Σzz

#!

¼ N

 "
Qμy
Rμx

#
;

"
QΣyyQt QΣyxRt

RΣxyQt RΣxxRt

#! (3)

In addition, a linear model relatingw conditioned on z can be written
as,

w ¼ μw þ αt
(
z' μz

)
þ τ (4)

where α is the regression coefficient vector for the transformed model
and τ ! Nð0;ΣwjzÞ. Further, if both Q and R are orthonormal matrices,
i.e.,QtQ ¼ Im andRtR ¼ Ip, the inverse transformation can be defined as,

Σyy ¼ QtΣwwQ Σyx ¼ QtΣwzR
Σxy ¼ RtΣzwQ Σxx ¼ RtΣzzR

(5)

From this, we can find a direct connection between different popu-
lation properties of (2) and (4).

Regression Coefficients:

α ¼ ΣwzΣ'1
zz ¼ QΣyzRt½RΣxxRt)'1 ¼ Q

*
ΣyxΣ'1

xx

+
Rt ¼ QβRt

Conditional Variance Further, the conditional variance-covariance
matrix of w given z is,

Σwjz ¼ Σww ' ΣwzΣ'1
zz Σzw

¼ QΣyyQt 'QΣyxRt½RΣxxRt)'1RΣxyQt

¼ QΣyyQt 'QΣyxΣ'1
xx ΣxyQt

¼ Q
*
Σyy ' ΣyxΣ'1

xx Σxy
+
Qt ¼ QΣyjxQt

Coefficient of Determination The coefficient-of-determination ma-
trix corresponding to w can be written as,

(
ρ2w
)
jj' ¼ Σ'1=2

ww ΣwzΣ'1
zz ΣzwΣ'1=2

ww

¼
σt
zwi
Σ'1
zz σzwj0ffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2wi
σ2wj0

q 8j; j0 ¼ 1…m

where, σzwj and σzwj0 are covariances of z with wj and wj0 , respectively.
Also, σ2wj

and σ2wj0
are unconditional variances of wj and wj0 . For simplicity,

Fig. 3. Simulation of predictor and response variables for design one after orthogonal transformation of predictor and response components by rotation matrices Q
and R shown as the upper left and the lower right block matrices in (b). Here (a) is the covariance structure of the latent space, which is rotated by the block diagonal
rotation matrix in (b) resulting the covariance structure of simulated data in (c).

Table 2
Minimum average prediction error (number of components corresponding to
minimum prediction error, minimum prediction error) (For Yenv, the number of
response components is given).

Model Design: 1 Design: 2 Design: 3 Design: 4

CPLS (3, 3.24) (4, 3.22) (3, 4.09) (3, 4.05)
CPPLS (3, 3.21) (3, 3.17) (3, 4.11) (3, 4.04)
OLS (1, 3.60) (1, 3.58) (1, 4.57) (1, 4.50)
PCR (7, 3.28) (6, 3.19) (6, 4.08) (6, 4.04)
PLS1 (2, 3.32) (5, 3.20) (1, 4.16) (5, 4.07)
PLS2 (5, 3.29) (6, 3.19) (3, 4.11) (6, 4.06)
Senv (4, 3.17) (5, 3.14) (3, 4.35) (5, 4.28)
Xenv (5, 3.23) (6, 3.20) (5, 4.10) (6, 4.11)
Yenv (3, 3.24) (3, 3.23) (3, 4.29) (3, 4.24)

R. Rimal et al. Chemometrics and Intelligent Laboratory Systems 176 (2018) 1–10
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we will denote σziwj by σij.
Since the rotation matrices give a direct connection between the

covariance of (1) and (3), a straight forward relationship can be worked
out between the terms in the above given matrix and their counterpart
covariance matrices of the xy-space.

From the eigenvalue decomposition principle, if Σxx ¼ RΛRt and
Σyy ¼ QΩQt then z and w can be interpreted as principal components of
x and y respectively. In this paper, these principal components will be
termed as predictor components and response components respectively.
Here, Λ and Ω are diagonal matrices of eigenvalues of Σxx and Σyy ,
respectively.

3. Relevant components

Consider a single response linear model with p predictors.

y ¼ μy þ βtðx' μxÞ þ ε

where, ε ! Nð0; σ2Þ and x is a vector of random predictors. Following the
concept of relevant space and irrelevant space which is discussed
extensively in Helland and Almøy [13], Helland [12], Helland et al. [14],
Cook et al. [5], and Sæbøet al. [19], we can assume that there exists a
subspace of the full predictor space which is relevant for y. An orthogonal
space to this space does not contain any information about y and is
considered as irrelevant. Here, the y' relevant subspace of x is spanned
by a subset of the principal components defined by the eigenvectors of
the covariance matrix of x, i.e. Σxx.

This concept can be extended tom responses so that the subspace of x
is relevant for a subspace of y. This corresponds to the concept of
simultaneous envelopes [8] where relevant (material) and irrelevant
(immaterial) space were discussed for both response and predictor
variables.

3.1. Model parameterization

In order to construct a fully specified and unrestricted covariance
matrix of z and w for the model in equation (3), we need to identify 1=
2ðpþmÞðpþmþ 1Þ unknown parameters. For the purpose of simula-
tion, we implement some assumptions to re-parameterize and simplify
the model. This enables us to construct a wide range of model properties
from only few key parameters.

Parameterization of ΣzzIf we let the rotation matrix R correspond to
the eigenvectors of Σxx, then z becomes the set of principal components
of x. In that case Σzz is a diagonal matrix with eigenvalues λ1;…; λp.
Further, we adopt the same parametric representation as Sæbøet al. [19]
for these eigenvalues:

λi ¼ e'γði'1Þ; γ > 0 and i ¼ 1; 2;…; p (6)

Fig. 4. Minimum of average prediction error.

Table 3
Simulation Design of second example.

η : 0:1 η : 0:8 Parameter Value

Single Informative Response Component
Design 1 Design 2 relpos 2, 3, 5, 7

q 1000
R2 0.8

Two Informative Response Components
Design 3 Design 4 relpos 2; 3

q 500; 500
R2 0.6; 0.6

R. Rimal et al. Chemometrics and Intelligent Laboratory Systems 176 (2018) 1–10
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Here, as γ increases, the decline of eigenvalues becomes steeper,
hence the parameter γ controls the level of multicollinearity in x. We can
write Σzz ¼ Λ ¼ diagðλ1;…;λpÞ.

Parameterization of Σww In similar manner, a parametric represen-
tation of eigenvalues corresponding to Σww is adopted as,

κj ¼ e'ηðj'1Þ; η > 0 and j ¼ 1; 2;…;m (7)

Here, the decline of eigenvalues becomes steeper as η increases from
zero. At η ¼ 0, all w will have equal variance 1. Hence we can write
Σww ¼ diagðκ1;…; κmÞ.

Parameterization of Σzw After parameterization of Σzz and Σww, we
are left with m# p number of unknowns corresponding to Σzw. Some of
the elements ofΣzw may be equal to zero, which implies that the given z is
irrelevant for the given variable w. The non-zero elements define which
of the z that are relevant forw. We typically refer to the indices of these z
variables as the positions of relevant components. In order to re-
parameterize this covariance matrix, it is necessary to discuss the posi-
tion of relevant components in detail.

3.1.1. Position of relevant components
Let k1 components be relevant for w1, k2 components be relevant for

w2 and so on. Let the positions of these components be given by the index
setsP 1;P 2;…;P m respectively. Further, the covariance between wj and
zi is non-zero only if zi is relevant for wj. If σij is the covariance betweenwj

and zi then σij 6¼ 0 if i 2 P j where i ¼ 1;…; p and j ¼ 1;…;m and σij ¼ 0
otherwise.

In addition, the true regression coefficients α for wj (4) is given by:

αj ¼ Λ'1σij ¼
X

i2P j

σij

λi
; j ¼ 1; 2;…m

The positions of the relevant components have heavy impact on
prediction. Helland and Almøy [13] have shown that if the relevant
components have large eigenvalues (variances), which here implies small
index values in P j, prediction of y from x is relatively easy and if the

eigenvalues (variances) of relevant components are small, the prediction
becomes difficult, given that the coefficient of determination and other
model parameters are held constant. For example, if the first and second
components, z1 and z2, are relevant for w1 and fifth and sixth compo-
nents, z5 and z6, are relevant for w2, it is relatively easier to predict w1

thanw2, other properties being similar. This might be so, because the first
and second principal components have larger variances than the fifth and
sixth components.

Although the covariance matrix may depend on few relevant com-
ponents, we can not choose these covariances freely since we also need to
satisfy following two conditions:

* The covariance matrices Σzz, Σww and Σ must be positive definite
* The covariance σij must satisfy user defined coefficient of
determination

We have the relation,

ρ2w ¼ Σ'1=2
ww Σt

zwΣ'1
zz ΣzwΣ'1=2

ww

¼
σt
ijΛ

'1σij0ffiffiffiffiffiffiffiffiffiffi
σ2j σ

2
j0

q 8j; j0 ¼ 1…m

Applying our assumptions that, Σww ¼ diagðκ1;…; κmÞ (7) and Σzz ¼
Λ ¼ diagðλ1;…; λpÞ (6), we obtain,

ρ2w ¼ Σ'1=2
ww Σt

zwΛ
'1ΣzwΣ'1=2

ww ¼

2

6666664

Xp

i¼1

σ2i1
λiκ1

…
Pp

i¼1

σi1σim
λi

ffiffiffiffiffiffiffiffiffi
κ1κm

p

⋮ ⋱ ⋮
Xp

i¼1

σi1σim

λi
ffiffiffiffiffiffiffiffiffi
κ1κm

p …
Pp

i¼1

σ2im
λiκm

3

7777775

Furthermore, we assume that there are no overlapping relevant
components for any two w, i.e, P j \P j* ¼ ∅ or σijσij+ ¼ 0 for j 6¼ j*. The
additional unknown parameters in the diagonal of ρ2w should agree with

Fig. 5. Root mean square of error of prediction of test observation averaged over all response variables.
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user specified coefficients of determination for w. i.e, ρ2wj
is,

ρ2wj
¼
Xp

i¼1

σ2ij
λiκj

Here, only the relevant components have non-zero covariances with
wj, so,

ρ2wj
¼
X

i2P j

σ2
ij

λiκj

For some user defined ρ2wj
the σ2

ij is determined as follows,

1. Sample kj values from a uniform distribution U ð'1; 1Þ distribution.
Let them be denoted S P 1 ;…;S P kj

.

2. Define,

σij ¼ SignðS iÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2wj

,,,S i

,,,
P

k2P j

,,,S k

,,,
λiκj

vuuut

for i 2 P j and j ¼ 1;…m
This means that the covariances between the predictor components

and the response components are sampled randomly, but with restriction

Fig. 6. Web interface of shiny application of
simrel: (a) Buttons to trigger simulation, (b)
Parameters for simulation, (c) Visualization
of the true properties of simulated data
(regression coefficients, true and estimated
covariance between response and predictors
components) (d) Additional analysis (e)
Download option of simulated data.
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that the requested ρ2wj
values are satisfied. This also implies that the

regression coefficients α in (4) and β in (2) are sampled randomly under
the same restriction.

3.1.2. Data simulation
From the above given parameterizations and the user defined choices

of model parameters, a fully defined and known covariance matrix Σ of
ðw; zÞ is given. For the simulation of a single observation of ðw; zÞ let us
define g ¼ Σ'1=2u such that covðgÞ ¼ Σ. Here Σ'1=2 is obtained from
Choleskey decomposition of Σ, and u is simulated from independent
standard normal distribution.

Similarly, in order to simulate n observations, we define G
n#ðmþpÞ

¼

UΣ'1=2. Here the first m columns of G will serve as W and remaining p
columns will serve as Z. Further, each row of G will be a vector sampled
independently from the joint normal distribution of ðw;zÞ. Finally, these
simulated matricesW and Z are orthogonally rotated in order to obtain Y
and X, respectively. In the following section we discuss these rotation
matrices in more detail.

3.2. Rotation of predictor space

Initially, let us consider an example where a regression model with
p ¼ 10 predictors ðxÞ and m ¼ 4 responses ðyÞ. Let's assume that only
three response components ðw1;w2 and w3Þ are needed to describe all
four response variables. Further, let the index sets P 1 ¼ f1;2g;P 2 ¼
f3; 4g and P 3 ¼ f5; 6g define the positions of the predictor components
of x that are relevant for w1;w2 and w3, respectively. Let S 1, S 2 and S 3

be the orthogonal spaces spanned by each set of predictor components.
These spaces together span S k ¼ S 1 , S 2 , S 3, which is the mini-
mum relevant space and equivalent to the x-envelope as discussed by
Cook et al. [5].

Moreover, let q1 ¼ 3; q2 ¼ 3 and q3 ¼ 2 be the number of predictor
variables we want to have relevant for w1;w2 and w3 respectively. Then
q1 ¼ 3 predictors may be obtained by rotating the predictor components
in P 1 along with one more irrelevant component. Similarly, q2 ¼ 3
predictors, relevant for w2, can be obtained by rotating predictor com-
ponents in P 2 along with one more irrelevant component and finally,
q3 ¼ 2 predictors, relevant for w3, can be obtained by rotating the
components in P 3 without any additional irrelevant component. Let the

space spanned by the q1; q2 and q3 number of predictors be S q1 , S q2 and
S q3 . Together they span a space S q ¼ S q1 , S q2 , S q3 . This space is
bigger than S k since in the process two irrelevant components were
included in the rotations. Here, S k is orthogonal to S p'k and S q is
orthogonal to S p'q. Generally speaking, here we are splitting the com-
plete variable space S p into two orthogonal spaces – S k relevant for w
and S p'k irrelevant for w.

In the previous section, we discussed about the construction of a
covariance matrix for the latent structure. Fig. 1(a) shows a similar
structure resembling the example here. The three colors represent the
relevance with the three latent response components ðw1;w2 and w3Þ.
Here we can see that z1 and z2 (first and second predictor components of
x) have non-zero covariance with w1 (first latent component of response
y). In the similar manner other non-zero covariances are self-explanatory.

In order to simulate predictor variables ðxÞ, we construct matrix R
which then is used for orthogonal rotation of the predictor components z.
This defines a new basis for the same space as is spanned by the predictor
components. In principle, there are many possible options for defining a
rotation matrix. Among them, the eigenvector matrix of Σxx can be a
candidate. However, in this reverse engineering approach both rotation
matrices R and Q along with the covariance matrices Σxx are unknown.
So, we are free to choose any R that satisfies the properties of a real
valued rotation matrix, i.e R'1 ¼ Rt and detðRÞ ¼ - 1 so that R is
orthonormal. Here the rotation matrix R should be block diagonal as in
Fig. 1(b) in order to rotate spaces S 1;S 2… separately. Fig. 2(a) shows
the simulated predictor components z that we are following in our
example where we can see that the components z1 and z2 (relevant for
w1) is getting rotated together with an irrelevant component z8. The
resultant predictors (Fig. 2(b)) x1; x2 and x8 will hence also be relevant
for w1. In the figure, we can see that components z7; z8; z9 and z10 are not
relevant for any responses before rotation, however, the x8; x10 pre-
dictors become relevant after rotation keeping x7 and x9 still irrelevant.

Among several methods [1,11] for generating random orthogonal
matrix, in this paper we are using orthogonal matrix Q obtained from
QR-decomposition of a matrix filled with standard normal variates. The
rotation here can be a) restricted and b) unrestricted. The latter rotates all
components z together and makes all predictor variables somewhat
relevant for all response components. However, the former performs a
block-wise rotation so that it rotates certain selected predictor
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components together. This gives control for specifying certain predictors
as relevant for selected responses, which was discussed in our example
above. This also allows us to simulate irrelevant predictors such as x7 and
x9 which can be detected during variable selection procedures.

3.3. Rotation of response space

The previous example has four response variables with only three
informative components w1;w2 and w3. During the rotation procedure,
the response space is also rotated along with the predictor space. Fig. 1
shows that the informative response component w3 is rotated together
with the uninformative response component w4 so that the predictors
which were relevant for w3 will be relevant for response variables y3 and
y4. Similarly, response components w1 and w2 are rotated separately so
that predictors relevant for w1 and w2 will only be relevant for y1 and y2
respectively, which we can see in Fig. 2. Although the response compo-
nents have exclusive set of relevant predictors, the rotation of the
response space has the potential of creating several response variables
that depend on the same relevant predictor space. In the r-package simrel,
the combining of the response components is specified by a parameter
ypos.

4. Implementation

This section demonstrates an application of multi-response extension
of simrel with two examples in order to compare different estimation
methods on the basis of prediction error. These example are simply a
demonstration of the use of simrel package rather than an extensive
comparison of methods.

4.1. Example 1

For the comparison, we have considered four well established esti-
mation methods.

a) Ordinary Least Squares (OLS),
b) Principal Component Regression (PCR),
c) Partial Least Squares predicting individual response variable sepa-

rately (PLS1) and
d) Partial Least Squares predicting all response variables together

(PLS2).

We have also considered four relatively new estimation methods in
multi-response regression:

a) Canonically Powered Partial Least Squares regression (CPPLS) [15],
b) Canonical Partial Least Squares regression (CPLS) [15],
c) Envelope estimation in predictor space (Xenv) [6],
d) Envelope estimation in response space (Yenv) [7] and
e) Simultaneous estimation of x- and y-envelope (Senv) [8].

From the possible combinations of two levels of coefficient of deter-
mination ðρ2Þ and two levels of γ (6) (the factor that controls the multi-
collinearity in predictor variables), four simulation designs (design 1–4)
were prepared. Replicating each design 20 times, 80 datasets with five
response variables ðm ¼ 5Þ and 16 predictor variables ðp ¼ 16Þ were
simulated using the method discussed in this paper. It was also assumed
that three response components (w1;w2 and w3) completely describe the
variation present in five response variables (y1…y5). Here, in this
example we have assumed that all w's have equal variance, i.e. Σww ¼ Im,
that is, η ¼ 0 in (7). The four designs are presented in Table 1. All datasets
contained 100 sampled observations and out of 16 predictor variables,
three disjoint sets of five predictor variables each are relevant for
response components w1;w2 and w3. Although the simulation method is
well equipped to simulate data with p≫n, for incorporating envelope
estimation methods, which are based on maximization of likelihood, we

have chosen a n > p situation in the example. Further, predictor com-
ponents z1 and z6 were relevant for response component w1, predictor
components z2 and z5 were relevant for response component w2 and
predictor component z3 and z4 were relevant for response component w3.
In addition, following the discussion about rotation of response space
(section 3.3), w1 was rotated together with w4 and w2 was rotated
together with w5. Fig. 3 visualizes the covariance structure and rela-
tionship between the response and predictor variables for the first design.

For each method, we can write an expected squared prediction error
as,

ϑ
m#m

¼ E
h(bβ ' β

)tΣxx
(bβ ' β

)i
þ Σyjx (8)

where, bβ is an estimate of the true regression coefficient β and Σxx is the
true covariance structure of the predictor variables obtained from simrel.
Also, Σyjx is the true minimum error of the model. Here bβ varies across
different estimation methods while the remaining terms are the same for
each dataset design. The expression in (8) is estimated from 20 replicated
calibration sets. Further, an overall prediction error of all responses is
measured by the trace of ϑ (8).

The minimum prediction error (measured as discussed above) for
nine estimation methods averaged over 20 replications of four designs
are shown in Table 2. The table also gives the number of predictor
components (response components in case of Yenv), a method has used in
order to obtain the minimum of average prediction error.

Table 2 shows that the simultaneous envelope has prediction error of
3.17 and 3.14 in design 1 (with 4 components) and design 2 (with 5
components), respectively, which is smaller than other methods. How-
ever, the method was not able to show the same performance in design 3
and design 4. The PCR model has the smallest prediction error (4.08)
from 6 components in design 3 and Canonically Powered PLS has mini-
mum prediction error (4.04) from 3 components in design 4. In design 3,
we can also see that the Canonical PLS method has second best perfor-
mance with only three components. The number of components vary
across different replicated dataset, but the component corresponding to
minimum prediction error is discussed here. A detailed picture of pre-
diction error for each estimation method obtained for each additional
component is shown in Fig. 4. Although designs 2 and 4 have higher
levels of multicollinearity, the performance of the estimation methods is
indifferent to its effect. Since all methods, except OLS, are based on
shrinking of estimates, they are less influenced by the multicollinearity
problem.

The analysis presented in Fig. 4 has addressed some questions such as
how methods work when there exist a true reduced dimension in
response space, but also raised other questions like why they perform
differently. For example, what is the reason for the decreasing relative
performance of the simultaneous envelope method as the ρ2 values are
reduced? Does this depend on the dimensions and shape of the y enve-
lopes? Since the example is merely intended as a demonstration of how
simrel can be used in scientific study, a more elaborative studies would
be necessary to answer such questions, but for this purpose simrel would
be a powerful tool.

4.2. Example 2

In this second example, wide matrices with 100 observations and
1000 predictor variables were simulated. Since wide matrices are com-
mon in various fields such as genomics, spectroscopy and chemometrics,
we set up this second example to compare two variants of partial least
square regression – PLS1 and PLS2. While estimating regression co-
efficients PLS1 uses each response variable separately, while PLS2 uses
them all simultaneously. A simulation design was constructed as in
Table 3. With each design, 20 replicated datasets were simulated having
five response variables and a moderate level of multicollinearity within
the predictor variables (γ ¼ 0:5).
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The comparison were based on the prediction error measured by root
mean square error of prediction (RMSEP). In order to approximate the
error to theoretically computed error, 1000 extra test samples were
drawn from the same distribution as the training samples during
simulation.

One to ten components were used to fit the simulated data models.
The prediction error was recorded for each response variable and each
additional component. The first and second design in Table 3 has one
informative response component for which four predictor components
are relevant at positions 2, 3, 5 and 7, and the coefficient of determina-
tion is 0.8. Since the informative response component is rotated together
with four uninformative response components, the information is shared
among all five response variables after rotation.

The third and fourth design has two informative response compo-
nents. The first response component has one relevant predictor compo-
nent at position 2 and a coefficient of determination of 0.6. Similarly, the
second response component has one relevant predictor component at
position 3 and also here the coefficient of determination is 0.6.

In addition to having one and two response component models, two
levels of variance structure of the response components is considered and
defined by η parameters with values 0.1 and 0.8 respectively. In the first
and third design, all response components vary in similar manner (η ¼
0:1), while in the second and fourth design the informative response
components have higher variance (η ¼ 0:8) than the uninformative ones
as the eigenvalues of Σww drop faster in this case.

Fig. 5 shows the average prediction error of test observations
modelled by PLS1 and PLS2 for all four designs. The prediction errors are
averaged over all 20 replicated datasets.

In general, PLS2 dominates PLS1 with regard to minimum error
achieved for these simulated designs. The difference is largest for the
designs with η ¼ 0:1 in which case the response are moderately corre-
lated and prediction appears to be more difficult than for η ¼ 0:8. The
effect of number of relevant response and predictor components appears
to have less influence on the results than the covariance structure of Σyy .
This small example of the use of simrel indicates that a more elaborate
comparison study should be done on PLS1 and PLS2 in this respect.

5. Web interface

In order to give an alternative interface for simrel, we have created a
shiny app which allows users to provide the simulation parameters
through different input fields. Fig. 6 shows a screenshot of the applica-
tion. The application contains threemain sections throughwhich the user
can interact with this simulation approach. A random seed can be
selected using section Fig. 6 (a) so that a particular set of data can be re-
simulated if needed. Fig. 6 (b) has all the input panels where the user-
dependent parameters for simulation can be entered. Here the user also
has the option to simulate univariate, bivariate or multivariate response
data. In addition, a simulated R-object comprising the simulated data can
be downloaded in Rdata format (section (e) in Fig. 6). The object holds
the simulated data along with other properties such as coefficient of
determination for each response, true regression coefficients and rotation
matrices. Users can also download simulated data in JSON and CSV
format.

All simrel parameters can be entered using a simple user interface
where vector elements are separatedwith comma (,) and list elements are
separated with semicolon (;). For instance, the relevant position dis-
cussed in the implementation (section 4) of this paper can be entered as
1, 6; 2, 5; 3, 4 which is equivalent to R syntax list (c(1, 6), c (2, 5), c(3, 4)).
An R expression equivalent to the input parameters as shown in Fig. 5(b)
can be written as,

With the parameters for simulation in the screenshot (Fig. 6) 200
training sets (n) and 50 test sets (ntest) will be simulated with 15 pre-
dictor variables (p) and 4 response variables (m). The 4 response vari-
ables will have a true latent dimension of two, which is spanned by the
relevant response components. The first response component is rotated

together with the third (irrelevant) response component and the second
response component is rotated together with the fourth (irrelevant)
response component as set in ypos. Out of 15 predictors, 5 will be rele-
vant for the first response component and 4 will be relevant for the
second response component, as set by q. The 5 predictor variables, that
are relevant for the first response component, span the same space as the
predictor components at position 1 and 2. Similarly, the 4 predictor
variables that are relevant for the second response component, span the
same space as the predictor components at position 3, 4 and 6 (relpos).
The coefficient of determination for the first and second response com-
ponents are 0.8 and 0.7, respectively (R2). The eigenvalues of the pre-
dictor components decay exponentially by the factor of 0.6 (gamma),
whereas the eigenvalues of response components are constant (but can be
set to exponential decay) (eta).

The application not only allows users to simulate data, but also gives
some insight into simulated data properties. Section (c) in Fig. 6 contains
three plots – a) true regression coefficients b) relevant components and c)
estimated relevant components. In the first plot (Fig. 6(c) top) we can see
that predictor variables (1, 2, 8, 9 and 13) are relevant for the first and
third response variables (red and blue line) by their non-zero coefficients,
whereas predictor variables (3, 4, 6 and 15) are relevant for the second
and fourth response variables (purple and green line). The second plot
(Fig. 6(c) middle) shows the covariances between the response compo-
nents and the predictor components along with the corresponding ei-
genvalues in the background (bar plot). In the plot the absolute value of
the covariances after scaling with the largest covariance are shown. As in
our parameter setting, the plot shows that the first (red line) and second
(green line) predictor components have non-zero covariance with the
first and third response components, and the fourth and sixth predictor
components have non-zero covariance with the second response
component. The third plot (Fig. 6(c) bottom) is the estimated covariances
between the predictor components and the response variables, for the
simulated data. Since the first and third response components are rotated
together, in the plot, the covariance between the predictor components
and the first and third response variables (red and blue line) are following
similar patterns as the theoretical (6(c) middle). This also suggests that
the predictor components which were relevant for the first response
component, becomes relevant for the first and third response variables
after rotation.

Along with these main sections, section (d) in the same figure con-
tains additional analysis performed on the simulated data such as its
estimation with different methods. This section is intended for educa-
tional purposes to show how changing the data properties influences the
performances of different estimation and prediction methods. Beside this
application, for Rstudio users, a gadget will be available after installing
the r-package. This gadget provides an interface enabling users to input
simulation parameters and access some of the properties.

Many scientific studies [8,14,18] are using simulated data in order to
compare their findings with others or assess its properties. In many of
these situations, a user-friendly and versatile simulation tool like simrel
can play an important role. Gangsei et al. [10] and Sæbøet al. [19] are
some examples where the univariate and bivariate form of simrel have
been used for such purposes.

6. Conclusion

Whether comparing methods or assessing and understanding the
properties of any method, tool or procedure; simulated data allows for
controlled tests for researchers. However, researchers spend enormous
amount of time creating such simulation tools so that they can obtain a
particular nature of data. We believe that this tool along with the R-
package and the easy-to-use shiny web interface will become an assistive
tool for researchers in this respect.
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Appendix A. Supplementary data

Supplementary data related to this article can be found at https://doi.
org/10.1016/j.chemolab.2018.02.009.
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Abstract
Partial least squares (PLS) regression has been a very popular method for pre-
diction. The method can in a natural way be connected to a statistical model,
which now has been extended and further developed in terms of an envelope
model. Concentrating on the univariate case, several estimators of the regres-
sion vector in this model are defined, including the ordinary PLS estimator, the
maximum likelihood envelope estimator, and a recently proposed Bayes PLS
estimator. These are compared with respect to prediction error by systematic
simulations. The simulations indicate that Bayes PLS performs well compared
with the other methods.
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1 INTRODUCTION

Supervised learning from multivariate data is a central problem area in applied statistics and also in chemometrics. Specif-
ically, let our task be to predict a single variable y from a p-dimensional variable x, having data on n units. From a statistical
point of view, a large number of learning methods are discussed in Hastie et al,1 mainly under the ordinary multiple
regression model. In chemometrics, partial least squares (PLS) regression is the dominating method.

Partial least squares regression has had a vigorous development in the chemometric literature since it was proposed by
Wold et al2 and Martens and Næs.3 The method has been extended in several directions, and its applications have been
expanded to an increasing number of fields, for instance, genomic data.4 Both these issues have been discussed in detail
in a recent paper by Mehmood and Ahmed,5 where a wealth of further references may be found.

Sometimes, the issue is prediction, but very often, one also see interpretations of scoring, loading, and correlation plots;
see, for instance, Martens and Martens.6 Such plots are not unfamiliar to statisticians in principal component connections,
but they are much more used by the chemometric society, and many scientists find them informative. They are plots of
the sample variants of the latent variables and parameters defined by (3), (4), and (5) below and, thus, involve consistent
estimates of these quantities when n → ∞ and probably also in the more general case p∕n → 0.

In the beginning, the PLS method was to some extent neglected or turned down by statisticians (an exception among
others was Frank and Friedman7; see also Helland8,9), but it is now included as a tool among other biased regression
methods by applied statisticians. For a general discussion paper with contributions both from mathematical statisticians
and chemometricians, see Sundberg.10

Indeed, there was a difference in culture between chemometricians and statisticians then, and this difference still exists
to a large extent. A statement by Munck et al11 illustrates this, as seen from one side: “If chemometrics in its histori-
cal development had been limited to follow current scientific (and statistical) theories there would have been minimal
progress in its wide applications today.”

Recently, the difference in culture was discussed in some detail by Martens.12 On the one hand, Martens makes the point
that the field of Chemometrics has a lot to learn from other disciplines—mathematics, statistics, and computer science.

Journal of Chemometrics. 2018;32:e3044. wileyonlinelibrary.com/journal/cem Copyright © 2018 John Wiley & Sons, Ltd. 1 of 13
https://doi.org/10.1002/cem.3044
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Among other things, he says that it will not be enough to have efficient “black box” algorithms. On the other hand,
he accuses statisticians in general for a predilection for “macho mathematics,” concluding in part that Chemometrics
need more statistics but not more statisticians. In other parts of the paper, he talks about bridging the gap between the 2
disciplines, an effort that we whole heartedly support.

This difference in culture may in part be related to the concepts of creativity and rigor, qualities which to some extent
may be called complementary. One could say that one culture puts more emphasis on creativity, the other on rigor. Of
course, this is a huge simplification. First, there is a lot of creativity among statisticians, also mathematical statisticians.
Secondly, one should emphasize that precise thinking also should influence practice. A case of point is the following:
Chung and Keleş13 recently proved that the PLS regression vector is inconsistent when p∕n → k > 0 under a wide set of
conditions. This result is probably not too well known among chemometricians; some may have a tendency to put much
confidence in PLS regression when p ∼ n or p > n. It is to be emphasized that the inconsistency result in Chung and
Keleş13 is only concerned with estimation of the regression vector. The mathematical properties of PLS as a “prediction”
method when p > n are largely unknown, from a statistical point of view. There is much positive empirical evidence
among applied researchers on these properties, but statisticians have only started to attack this problem, since it from an
analytic point of view is very difficult. In particular, see the very recent paper by Cook and Forzani,14 where asymptotic
expansions allowing both n and p to be large are developed for PLS prediction with 1 component.

It is true that chemometricians have had a leading edge in the development of PLS and of certain multivariate methods,
in particular, with respect to visualization etc, and they still are ahead of statisticians in this sense.

Accepting this, an important general question is what mathematical statisticians can contribute with in this develop-
ment. There are relatively few papers by mathematical statisticians investigating statistical properties of the PLS regression
method itself. There are however several investigations on the shrinkage properties of PLS; see Krämer15 and references
there, and also Foschi16 with references. Garthwaite17 offered a simple interpretation of PLS. Stone and Brooks18 and Naik
and Tsai19 discuss different generalizations of PLS; in the latter paper also, consistency of PLS is proved. In Stoica and
Söderström,20 an asymptotic formulae related to PLS is derived. Chun and Keleş21 extends consistency to the case p∕n → 0,
introduces a sparse PLS algorithm, and compares methods by simulation. In Krämer and Sugiyama,22 the degrees of
freedom of PLS regression is discussed, and this concept is used in model selection. See also references in this last paper.

In Helland and Almøy,23 several predictors in the random x regression model were compared asymptotically as n → ∞,
including principal component regression (PCR) and sample PLS regression (see the next section). The conclusion was
that PCR is best for very large irrelevant eigenvalues (excluded from the prediction equation), whereas PLS regression
tends to be best for intermediate irrelevant eigenvalues. Because the difference is extremely small for small irrelevant
eigenvalues, and because very large irrelevant eigenvalues seldom occur in practice (and if they do, they should be
included in the prediction equation), it was concluded that PLS regression is the method of choice in many cases. An
additional argument for PLS over PCR is that PLS involves only choosing the number of components, whereas PCR also
entails deciding which of the components should be included in the prediction.

As already mentioned, Cook and Forzani14 give an asympotic expansion of the prediction error in PLS regression, which
also is informative when p → ∞, but mainly limited to 1 component. Results with several components are also announced.

A vital aspect in the history of statistics is the interplay between model and estimators. Once a model is formulated,
one can in principle think of several estimators in this model. A statistician will talk about a “hard” model in terms of
probability distributions—at least in terms of a model equation and a statement of correlation between terms in this
model. This is a concept that has had and has a great success in a number of disciplines and is at the very core of statistics
as a science. Our goal in the present paper is to show that this concept can be applied—and is useful—also in connection
to PLS. Specifically, our purposes are to

- stress that PLS as an algorithm can be connected to a unique statistical model (known since 1990);
- formulate 5 different ways to present this model (known in the statistical literature since 2013);
- argue that the simplest way to present the model is through the concept of relevant components—a reduction of the

random x regression model;
- review briefly some statistical investigations related to PLS;
- ask if the PLS algorithm may be improved by modifying the weights;
- argue that once the model is presented, the comparison of different estimators in the model is relevant;
- present a systematic tool (simrel) for comparing estimators in the model with relevant components;
- present the maximum likelihood estimator in the model;
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- present a Bayes estimator connected to the model;
- and compare the PLS algorithm, the maximum likelihood estimator, and the Bayes estimator in a systematic

simulation study, mainly with near collinear data.

Thus, in the PLS model, one can certainly discuss other estimators than the usual PLS regression estimator, which can
be seen as originating by replacing population (co)variances in the model by sample (co)variances. Two examples are the
maximum likelihood estimator of Cook et al,24 see also Cook et al25,26 and Cook and Zhang,27 and the Bayesian estimator
of Helland et al.28 By simulation, both these estimators have performed well compared with PLS regression under certain
conditions, but they have their disadvantages. The maximum likelihood estimator cannot be used in the case when the
data matrix has rank less than p, and the Bayesian estimator requires heavy computations, in particular, when p is large.

To compare estimators, we make vital use of the recently developed simulation package simrel; see Sæø et al.29 It is
very important to have such a tool in an area where it is difficult to obtain results by purely analytical means.

We emphasize that this paper is based upon reduction of the random x regression model. When considering latent vari-
ables from PLS, and when considering near collinearity in the observed x-variables, it is natural to treat these x-variables as
random. It is our philosophy that this is also the best way to look upon model reduction. On the other hand, in the context
of prediction, one could argue that one should condition upon the x-variables and consider them as fixed. A prominent
paper on PLS regression, taking fixed x-variables in the basic model, is Krämer and Sugiyama,22 where further references
can be found.

In recent years, there has been a rapidly growing statistical literature on the envelope model—a model generalizing the
PLS model. In addition to the maximum likelihood estimation paper mentioned above, the most important papers seem
to be Cook and Zhang,30 where simultaneous reduction in the x- and y-space is proposed, and Cook and Zhang,31 where
extensions to other regression methods than linear regression are discussed. More references can be found in these papers.

Model reduction in regression models is discussed in general from the point of view of rotations in the x-space in
Helland.32

The plan or this paper is as follows: In Section 2, we formulate the model in 5 different ways, which can be shown
to be equivalent. In Section 3, we define 4 different estimators in the model, including the recent Bayes PLS estimator
of Helland et al.28 In Section 4, we ask the question if the ordinary PLS estimator with m components can be improved
by forcing the weight vector at step m + 1 to vanish; the answer turns out to be negative. In Section 5, we describe the
simulations done for comparison of estimators with respect to prediction error, and in Section 6, we give the results of the
simulations. In Section 7, we illustrate the methods on a real data set. Finally, Section 8 is a discussion section.

2 THE MODEL: SEVERAL FORMULATIONS

Take as a point of departure the linear model
! = "! + !′(x − "x) + #, (1)

where ! and x are p-dimensional and the random predictor x has mean "x and covariance matrix Σxx, for simplicity,
assumed nonsingular here (this can be relaxed to assuming ! ∈ span(Σxx) in the case where this matrix is singular; see
Cook et al,24 and also C below). Independently, # is distributed with mean 0 and variance $2. When doing prediction from
this model for near collinear data, a model reduction may be called for. Throughout this paper, a definite m-dimensional
model reduction, which may be formalized in several equivalent ways, will be used. When this model holds, we say
that we have an envelope model or a PLS model of dimension m or that there are m relevant components for prediction
in the model.

A. Given a subspace of Rp, let P be the projection upon , and let Q be the projection orthogonal to . For simplicity,
discuss the case where "x = 0. Let now  be the smallest space such that (1) Qx is uncorrelated with Px and (2)
y is uncorrelated with Qx given Px. In this case, we may say that Qx contains no linear information about y,
neither directly nor through Px. Consider a reduction of the data to Px.

B. Here is an algebraic characterization, which turns out to be equivalent. For a matrix M, define M as the space of
vectors Mz, as z runs through  , and let ⟂ be the space perpendicular to  . Let now  be the smallest space in Rp

such that (1) both Σxx ⊆  and Σxx⟂ ⊆ ⟂ and (2) span(!) ⊆  . In this case, we say that  is the Σxx-envelope of
span(!). It can be shown Cook et al33 that the envelope always exists as the smallest space with the stated properties.



i
i

“Thesis” — 2019/10/8 — 23:16 — page 50 — #62 i
i

i
i

i
i

4 of 13 HELLAND ET AL.

C. The regression vector ! can always be expanded in terms of the eigenvectors di of Σxx:

! =
&∑

i=1
'idi. (2)

In general, when there are coinciding eigenvalues in Σxx, this expansion is not unique. However, assume that this
sum can be reduced to exactly m nonzero terms: ! =

∑m
i=1 'idi, where the di correspond to different eigenvalues of

Σxx. We then say that there are m relevant components for prediction in the model. This reduction can be imagined
to take place by 2 mechanisms: (1) Some of the ' i's are really zero, and (2) there are coinciding eigenvalues in Σxx.
Then, one can rotate such that it is enough with 1 eigenvector for each eigenspace in the sum. In this approach, it
is important that we only know that there are m nonzero terms in the sum, not which terms that are nonzero. For a
closer discussion of this, see Næs and Helland34 and Helland and Almøy.23

D. Consider the population version of the well-known PLS algorithm: Take e0 = x − "x, f0 = y − "y, and for a =
1, 2, … ,m compute successively:

wa = cov(ea− 1, (a− 1), ta = w′
aea− 1, (3)

pa = cov(ea− 1, ta)∕var(ta), qa = cov((a− 1, ta)∕var(ta), (4)

ea = ea− 1 − pata, (a = (a− 1 − qata.

It can be proved9 and is important in this connection that under the reduced model C, this algorithm stops auto-
matically after m steps when m < p: It stops because wm+1 = cov(em, fm) = 0. After those m steps, we get the
representations

x = "x + p1t1 + ... + pmtm + em, ! = "! + q1t1 + ... + qmtm + (m (5)

with the corresponding PLS population prediction

!m,PLS = "! + q1t1 + ... + qmtm = "! + !′
m,PLS(x − "x).

Theorem 1. (Helland9 and Cook et al24)

(a) The 2 conditions A and B on the space  are equivalent.
(b) The models formulated by C and D are equivalent.
(c) When there are m relevant components for prediction, the envelope space  has dimension m, and  can be taken

as span (w1, · · ·,wm) = span (d1, · · ·,dm).
(d) When the envelope space has dimension m, there are m relevant components for prediction.
(e) In this case, we have !m,PLS = ! .

Proof. (a) is proved in Cook et al,24, Proposition 1 and (b) in Helland.9, Theorem 2 Finally, (c)-(e) and the equivalence with E
below are contained in Cook et al.24, Proposition 5

In this sense, all the model formulations (A-D) are equivalent; they describe the same reduced model. In Helland9 and
Cook et al,24 a fifth equivalent formulation in terms of a Krylov sequence is also given:

E.  is also spanned by the vectors #x!,Σxx#x!, · · ·,Σm− 1
xx $x!, and m is the smallest integer such that ! = Σ− 1

xx #x! belongs
to  .

The simplest way to express the model reduction implied by PLS seems to be C. In analogy with the exivalence
between A and B, this can also be expressed as a reduction of the x vector. Consider again the centered case "x = 0.
For details, see Næs.34

C'. Let R be a nonrandom pxm matrix of rank m. Normalize such that R′R = I. There are m relevant components R′x
for predicting y if and only if R can be found such that (a) ! ∈ span(R) and (b) span(R) is spanned by eigenvectors
of Σxx.

Being a reduced model that can be motivated in so many different ways, it is definitively of interest to find a good
estimator of the regression vector ! under this model.
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3 ESTIMATORS IN THE PLS/ENVELOPE MODEL

Now that the PLS model is introduced, we will start to look at estimators of the parameters in this model, in particular,
estimators of !, which will give prediction. Of special interest is estimators that perform well in the case of near collinear
data. Some estimators are already known from the literature.

a. The ordinary PLS estimator can be introduced as follows: With data (X, y), take initial values E0 = X − x̄!′ and f 0 =
y− !̄!. Run the population PLS algorithm for A steps with population (co)variances replaced by sample (co)variances.
Ordinarily, A is found by cross-validation or by similar means. Note that from D in Section 2, the m-step PLS model is
characterized by wm+1 = cov(em, fm) = 0. Theoretically, when A = m, we cannot expect the sample weights ŵm+ 1 to
be zero. However, since any continuous function of the sample covariances and variances is consistent for the same
function of the population covariances and variances, since ŵm+ 1 through the PLS algorithm is such a function and
since wm+1 = 0, we will have limn→∞ŵm+ 1 = " almost surely.

b. The sparse regression SPLS of Chun and Keleş21: This requires 2 effective tuning parameters, and it also aims at
variable selection. Sparse partial least squares (SPLS) seems to be better than ordinary PLS in certain cases, also
when variable selection is not an issue.

c. When S = (X − x̄!′)′(X − x̄!′) has rank p, which specifically requires n > p, the maximum likelihood estimator of
! under the multinormal envelope model was given in Cook et al.24 This estimator is of course very useful, but it
cannot be used for small n. Modifications of the maximum likelihood estimator, which cover also this case, were
recently indicated in Cook et al.25 That paper also gives a MATLAB toolbox for maximum likelihood estimation in the
envelope model and in several generalizations of this model. A faster algorithm for maximum likelihood estimation
is discussed in Cook and Zhang.27 Even faster algorithms with modifications to small sample size n < p are recently
described in Cook and Zhang,35 and an R-package was recently described by Cook et al.26

d. Under a specific rotation-invariant prior, the Bayes estimator of ! under the model with m relevant components was
given in Helland et al.28 This estimator was shown to be close to the best equivariant estimator, but it requires heavy
computation.
The estimation was performed by a Markov Chain Monte Carlo approach. Specifically, for given m, and for observed
centered data y and X, the likelihood function is proportional to

( (y,X|$, %,D, $2) ∝ ($2)− n∕2 exp
(
− 1

2$2

(
y − X

m∑
i=1

'idi

)′ (
y − X

m∑
i=1

'idi

))

×

( &∏
i=1

+i

)− n∕2 n∏
,=1

exp
(
− 1

2 x′
,

( &∑
i=1

1
+i

did′
i

)
x,

)
,

(6)

where $ = [+1, … , +p] and D = [d1, … ,dp] are the eigenvalues and the eigenvectors of the x-covariance matrix Σxx
and % = ['1, … , 'm] are regression parameters of the PLS model.
As argued in Helland et al,28 a near optimal equivariant regressor is found as the Bayesian estimator under
rotation-invariant prior for d1, … ,dp and prior -(%) = ∏

i1∕'1− #
i , where 1∕# is a large uneven integer. Slightly mod-

ified scale priors are also chosen for $ as -($) =
∏

i 1∕+iexp(− #+∕2+i) and for $2 as -($2) = 1∕$2exp(− #$∕2$2).
Here, #+ and #$ are some small numbers chosen to ensure properness of the posterior distribution. Estimation of
model parameters may be done by means of Markov chain Monte Carlo methods. As shown in Helland et al,28 the
marginal posterior distributions for $2 and +i (for i = 1, … , p) are, for the given prior distributions, all inverse
gamma distributions. Furthermore, the marginal posterior distributions for ' i (for i ∈ 1, … ,m) are approxi-
mately normally distributed. There is no closed form posterior distribution for D, hence a random walk step with a
Metropolis-Hastings acceptance step is necessary for the sampling from the posterior distributions of the parameters.
R-code for the Bayes estimator is available at http://www.github.com/solvsa/BayesPLS, and further details on the
Markov chain Monte Carlo implementation may be found in the supplementary documentation to Helland et al.28

By simulation, both the maximum likelihood estimator c and the Bayes estimator d were shown to perform well com-
pared to the PLS estimator a. These 2 estimators assume a multinormal distribution of the data in their derivation, but
the estimators themselves are valid under more general assumptions. Both the chemometric tradition and the envelope
model of Cook et al24,33 demand no detailed distributional assumptions.
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4 CAN A BETTER ESTIMATOR BE FOUND BY SIMPLE MEANS?

The m step PLS model is characterized by the constraint wm+1 = cov(em, fm) = 0. However, in the sample PLS algorithm,
ŵm+ 1 is a continuous random variable if the data are continuous. Hence, almost surely, ŵm+ 1 ≠ wm+ 1 = ". This means
that the estimator of the vector of PLS parameter falls outside the corresponding parameter space. On the other hand, by
standard statistical theory, the maximum likelihood estimator and any Bayes estimator are always in the parameter space.

In this section, we ask the question whether we can improve the PLS algorithm in some way such that ŵm+ 1 = " for
the improved algorithm. That is, we seek modified weights ŵ1, · · ·, ŵm such that ŵm+ 1 = " in the modified algorithm.
Unfortunately, the answer to this question is no. This programme is only possible when S is invertible, and then it by
necessity leads to the least squares solution. Let Ŵ A = (ŵ1, · · ·, ŵA) for any A.

First, we need some properties of the ordinary PLS algorithm.

Proposition 2. At each step, the PLS weights satisfy

ŵA+ 1 = s − SŴA(Ŵ
′
ASŴA)− 1Ŵ′

As, (7)

and the A step regression vector is
!̂A = ŴA(Ŵ

′
ASŴA)− 1Ŵ′

As. (8)

Proof. These relations were proved in Helland,8 see equations (3.3) and (3.7) there, and were also used in Cook et al.24

Now, fix m. To find an algorithm such that ŵm+ 1 = 0, we will have to modify the weights ŵ1, · · ·, ŵm.

Definition 1. For the purpose of this section, call a restricted PLS prediction any prediction method based on an
estimator of ! of the form (8) for A = m such that

1.) Ŵ m = (ŵ1, · · ·, ŵm) is modified with respect to PLS in some way.
2.) Equation 7 holds for A = m and gives ŵm+ 1 = ".

Theorem 3. An RPLS prediction method exists if and only if S is invertible and S− 1s ∈ spanŴm. In that case, !̂ is equal
to the least squares estimator S− 1s.

Proof. Assume that (7) holds for A = m and ŵm+ 1 = ". Then, s = SŴ m(Ŵ
′
mSŴ m)− 1Ŵ ′

ms. This is possible for general
s only if S is nonsingular, and then it is equivalent to R

√
S
− 1

s =
√

S
− 1

s with R = A(A′A)− 1A′ , where A =
√

SŴ m.
Since R is the projector upon span(A), this is again equivalent to

√
S
− 1

s ∈ span(
√

SŴ m), or S− 1s ∈ span (Ŵ m). Then,
putting s = SŴ mq in (8) for some q gives !̂ = Ŵ mq = S− 1s.

Thus, Theorem 3 shows clearly that it is not possible to modify the PLS weights in a nontrivial way such that the
modified estimator belongs to the parameter space.

5 DATA SIMULATIONS FOR COMPARISON OF ESTIMATORS

A comparative study of the prediction performances of the regular PLS algorithm, the maximum likelihood envelope
method, the Bayes PLS, and the method of ordinary least squares (OLS) was performed on data simulated from the random
regression model (1) and a real dataset measuring various properties and near infrared (NIR) spectra of diesel fuels. This
and the following section will focus on simulation study in detail. In the study, we consider envelope method for predictor
reduction24 and use R-code discussed in Cook et al.26 A detailed description of the simulation procedure can be found
in Sæbø et al29 with the accompanying R-package simrel, but key features of the approach are presented next. The
simulation set up is best explained from reexpressing model (1) in the Gaussian case as

[
!
x

]
∼  (

"!x,Σ!x
)
= 

([
"!
"x

]
,
[
$2
! #t

x!
#x! Σxx

])
, (9)
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where #xy is a vector holding the covariances between the predictors (x) and the response (y). The vector of regression
coefficients ! is by standard theory given as ! = Σ− 1

xx #!x, which in turn can be expressed in terms of the eigenvalues
+1, … , +p and the eigenvectors d1, … ,dp of Σxx:

! =
&∑

i=1

d′
i#!x

+i
di =

&∑
i=1

'idi, (10)

as given in Equation 2. In simrel, the following simplifying assumptions are made:

⊳ It is assumed that +i = e− /(i− 1) for i = 1, … , p, implying +1 = 1 (which we may assume without loss of generality)
and that all subsequent eigenvalues are decaying according to the size of the parameter /. A large / gives a rapid
decrease in eigenvalues, implying high level of multicollinearity in x.

⊳ It is assumed that m ≤p eigenvectors are relevant for y, which means that Equation 10 (potentially) reduces to

! =
∑
i∈

'idi, (11)

where m-vector  is the set of indices of the relevant components (relpos) for which ' i = di
′#xy∕+i ≠ 0. Hence, the

envelope or the relevant space has dimension m (see Theorem 1).
⊳ Without loss of generality, it is further assumed that $y = 1, "y = 0 and "x = 0.

In simrel, the actual values of #xy were set to satisfy a prespecified value of the population coefficient of determination
02. It may be shown that under the above assumptions, 02 = #′

x!Σ− 1
xx #x!. This completes the specification of the parameters

used in simrel, and in the present comparison study, a design for the simulated data sets in terms of these parameters
were as defined in Table 1.

From the possible combination of the above parameters, 32 calibration sets were simulated with 5 replications of each,
ie, there were 160 calibration sets (datasets) altogether.

6 SYSTEMATIC COMPARISONS

A systematic comparison of the methods across the simulation designs was made on the basis of their ability to predict test
samples. Since the distribution of the simulated variables is fully known, the expected mean squared error of prediction
(MSEP) based on some !̂ estimated from a calibration set may be found as

Ex
[
E!(! − !̂)2] =

[
$2 + E

(
!̂ − !

)tΣxx
(
!̂ − !

)] n + 1
n (12)

in the model. The expectation on the right-hand side of the above expression is estimated for each method and for each
design as an average over the 5 replicated calibration sets. To study the effects of p, 02, relpos(), Method, and (/)
along with their interactions, we first retrieved the minimum MSEP for each method across 1 to 10 components (assumed
numbers of relevant components). In Figure 1, interaction plots for these data properties are displayed.

The effect of the third-order interaction between p, 02 and Methods, which we see in Figure 1 (left), shows that the
maximum likelihood–based estimation methods, in our case, the envelope and the OLS, perform poorly on data sets with
large number of variables and low 02. Still, the performance of the envelope is better than OLS also in situations where
p = 40 and n = 50, representing here p ∼ n. The interaction plots suggest that the Bayes PLS and ordinary PLS estimation
methods are better and more stable on average than the two other methods.

Similarly, the effect of third-order interaction between relpos, /, and Method in Figure 1 (right) shows that OLS
method gives higher prediction error than other methods, but the effect of relpos is small but notable for the envelope
method. Again, Bayes PLS and ordinary PLS are best.

TABLE 1 Parameters used for simulating calibration sets

Number of training samples n 50
Number of predictor variables p 15 and 40
Population coefficient of determination 02 0.5 and 0.9
Position of relevant components  ⊳ 1, 2 ⊳ 1, 3 ⊳ 2, 3 and ⊳ 1, 2, 3
Decay factor of eigenvalues of Σxx / 0.5 and 0.9
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FIGURE 1 Third-order interaction effects. MSEP, mean squared error of prediction; ENV, envelope; OLS, ordinary least squares; PLS,
partial least squares

FIGURE 2 Average prediction error for designs with 15 predictor variables where coefficient of determination is 0.5. MSEP, mean squared
error of prediction

The prediction error plots below are organized into 4 groups: (a) p = 15, 02 = 0.5; (b) p = 15, 02 = 0.9; (c) p = 40,
02 = 0.5; and (d) p = 40, 02 = 0.9. The OLS prediction error is shown by a straight dotted line.

In group (a), with small number of variables (p ≪ n) and noisy data (02 = 0.5), Figure 2 shows that all the estimation
methods performed better than OLS for all designs in this group, Bayes PLS being best in nearly all cases. Some conver-
gence problems with Bayes PLS when eigenvalues decrease rapidly can be ignored since the minimum MSEP is already
obtained from fewer components.

Having few variables rich with information (02 = 0.9), the designs in group (b) (Figure 3) leads to easy prediction with
low prediction error in general for all methods. All the methods including OLS have small MSEPs, but the other methods
are still dominant. In most of the situations, Bayes PLS has reached minimum error with only 1 component. In this group,
the performance of envelope is better than regular PLS, and the minimum error for envelope is also achieved with fewer
components.
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FIGURE 3 Average prediction error for designs with 15 predictor variables where coefficient of determination is 0.9. MSEP, mean squared
error of prediction

FIGURE 4 Average prediction error for designs with 40 predictor variables where coefficient of determination is 0.5. MSEP, mean squared
error of prediction

Low information content combined with many predictor variables characterize the designs in group (c), and prediction
is in general difficult for these designs. In Figure 4, the methods based on maximum likelihood estimation performed
poorly and often poorer than an average guess. Bayes PLS and regular PLS performed well, as in the previous designs.

With 40 predictors (p ∼ n) and rich information (high 02) (designs in group d), Figure 5 shows that in most of the
situations (except in design 16), the envelope method has nearly attained true minimum error (0.1) and has outperformed
OLS. However, its prediction error is still larger than Bayes PLS and PLS. Bayes PLS and PLS methods are highly stable
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FIGURE 5 Average prediction error for designs with 40 predictor variables where coefficient of determination is 0.9. MSEP, mean squared
error of prediction

and are closer to true minimum error. Further, Bayes PLS is able to obtain its minimum prediction error with only a small
number of components.

In general, ordinary PLS is very stable in all situations. It is extensible (lots of variants has been developed after its
introduction), easy, and less time consuming to fit than Bayes PLS and the envelope method. If the issue is to get closer
prediction from squeezing information as much as possible, Bayes PLS will be a good alternative. Its performance with
varying number of components is stable and better in all designs studied here. The envelope method performed better than
OLS, and the performance increased for informative data (02 = 0.9). However, it has an increased error with additional
components in many situations.

Correlation between estimated and true regression coefficients (3) along with the mean square error of estimation is
presented for 4 designs in Figure 6. In case of ordinary PLS and the envelope method, the correlation for design 1 from
group (a) and design 3 from group (b), both having 15 predictors, is high for small components. However, for design 2 from
group (c) and design 4 from group (d), envelope methods exhibit sudden decrease in the correlation with corresponding
increase in estimation error. The impressive prediction performance of Bayes PLS is also seen from the high correlation
of estimated coefficients and true coefficients. In addition, the average mean square error of regression for this methods
is also small compared with others for all the components.

Although having low prediction error in case of envelope estimation method, the coefficient estimates are highly unsta-
ble for different components, which we can see from its variation in correlation with true coefficients (Figure 6, top).
Bayes PLS and regular PLS estimates are more stable over different replicates and for different components (Figure 6,
bottom) especially when p ∼ n. This stability agrees with the low prediction error we have discussed before.

7 COMPARISON OF ESTIMATORS USING NIR SPECTRA OF DIESEL FUELS

Let us consider an example using a real dataset. In this example, we have used data from http://www.eigenvector.com/
data/SWRI/, which consists of NIR spectra of diesel fuels with different properties measured such as Catane Number.
Since the variables in NIR spectra are highly correlated, we have selected a subset of every 10th variable as predictors and
the property Catane Number as response. After removing missing observations, the first 150 observations were used as
calibration set, and the rest 231 were used as validation set.
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FIGURE 6 Correlation between true and estimated beta coefficient and beta estimation error. Box plots on the plots in first row show the
variation in the correlation for each estimator and number of components used

FIGURE 7 Root mean square error of prediction (RMSEP) from different estimators. Missing values were omitted in training and test
datasets. ENV, envelope; OLS, ordinary least squares; PLS, partial least squares

Using the calibration set, a model with 1 to 10 components were fitted using PLS, envelope, and Bayes PLS methods. An
OLS method was also fitted for reference. With each of these fitted models, the validation (test) set was used for prediction,
and the root MSEP was measured. Based on the prediction error, Figure 7 compares the estimators we have considered.

The results from Figure 7 show quite different results from the systematic simulation study, mainly for Bayes PLS
estimation. By using 3 and 4 components, the prediction from PLS and Bayes PLS is similar and can be considered their
best. Envelope model is able to attain similar prediction error just in 2 components. It is important to notice that Bayes PLS
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and envelope methods here are rather sensitive to the extra number of components, which also suggest that over-fitting
must be examined before using the model for predicting new observations. In the example, all the methods have significant
better performance than OLS.

8 DISCUSSION

The purpose of the present article has been to discuss the approach to PLS regression via model reduction in the random
x multiple regression model, and to compare estimators in this reduced model.

From simulations, the Bayes estimator under the PLS model seems to have very good properties. In virtually all of the
32 designs, the MSEP curve for Bayes PLS lies below that for ordinary PLS and also that for the maximum likelihood
envelope model. A particularly desirable feature of Bayes PLS is that the MSEP curve seems to be almost flat for varying
number of components. Thus, the error made by choosing a wrong number of components m by cross-validation must
be expected to be small.

Envelope and Bayes PLS estimation methods, when compared with ordinary PLS methods, display better prediction
performance (only when p is small for the envelope method). However, both of them have their disadvantages. The enve-
lope method, as based on maximum likelihood, breaks down when p approaches n, while Bayes PLS has time-consuming
computation, and in our simulations, it failed to converge for some cases.

However, in the results in the example using real data, the performance of Bayes PLS estimator is in contrast to its result
from the simulated data. Since the predictors are highly correlated, only a few number of components are sufficient for
the prediction, but when an extra number of components were used, the estimators seem to be influenced by the noise
which increases with each additional component. In this respect, a more thorough study on Bayes PLS should be done
for its contrast results on simulated and real dataset. A convergence issue in Bayes PLS can be suspected for the reason as
seen in the example using simulated data.

For practical purposes, the ordinary PLS algorithm still seems to be a good option for prediction purposes, but from a
statistical point of view, a closer study of its properties as p → ∞ seems to be called for. We feel that the model approach
of the present paper may give a good framework for such a study, both in terms of asymptotic expansions and in terms of
further simulations. Such simulations may also include the cross-validated LASSO and other methods such as ridge regres-
sion, but note that these estimators are derived from other considerations than that of predicting the effect of relevant
components.

This paper has been concentrated on the case of univariate response. We hope to discuss the multivariate case later.
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A B S T R A C T

While data science is battling to extract information from the enormous explosion of data, many estimators and
algorithms are being developed for better prediction. Researchers and data scientists often introduce new
methods and evaluate them based on various aspects of data. However, studies on the impact of/on a model with
multiple response variables are limited. This study compares some newly-developed (envelope) and well-
established (PLS, PCR) prediction methods based on real data and simulated data specifically designed by
varying properties such as multicollinearity, the correlation between multiple responses and position of relevant
principal components of predictors. This study aims to give some insight into these methods and help the
researcher to understand and use them in further studies.

1. Introduction

The prediction has been an essential component of modern data sci-
ence, whether in the discipline of statistical analysis or machine learning.
Modern technology has facilitated a massive explosion of data however,
such data often contain irrelevant information that consequently makes
prediction difficult. Researchers are devising new methods and algo-
rithms in order to extract information to create robust predictive models.
Such models mostly contain predictor variables that are directly or
indirectly correlated with other predictor variables. In addition, studies
often consist of many response variables correlated with each other.
These interlinked relationships influence any study, whether it is pre-
dictive modelling or inference.

Modern inter-disciplinary research fields such as chemometrics,
econometrics and bioinformatics handle multi-response models exten-
sively. This paper attempts to compare some multivariate prediction
methods based on their prediction performance on linear model data
with specific properties. The properties include the correlation between
response variables, the correlation between predictor variables, number
of predictor variables and the position of relevant predictor components.
These properties are discussed more in the Experimental Design section.
Among others, Sæbø et al. [26] and Almøy [2] have conducted a similar
comparison in the single response setting. In addition, Rimal et al. [25]
have also conducted a basic comparison of some prediction methods and
their interaction with the data properties of a multi-response model. The
main aim of this paper is to present a comprehensive comparison of

contemporary prediction methods such as simultaneous envelope esti-
mation (Senv) [8] and envelope estimation in predictor space (Xenv) [7]
with customary prediction methods such as Principal Component
Regression (PCR), Partial Least Squares Regression (PLS) using simulated
dataset with controlled properties. In the case of PLS, we have used PLS1
which fits individual response separately and PLS2 which fits all the
responses together. Experimental design and the methods under com-
parison are discussed further, followed by a brief discussion of the
strategy behind the data simulation.

2. Simulation model

Consider a model where the response vector ðyÞ with m elements and
predictor vector ðxÞ with p elements follow a multivariate normal dis-
tribution as follows,�
y
x

�
� N

��
μy
μx

�
;

�
Σyy Σyx

Σxy Σxx

��
(1)

where, Σxx and Σyy are the variance-covariance matrices of x and y,
respectively, Σxy is the covariance between x and y and μx and μy are
mean vectors of x and y, respectively. A linear model based on (1) is,

y¼ μy þ βtðx� μxÞ þ ε (2)

where, βt
m�p

is a matrix of regression coefficients and ε is an error term
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such that ε � N ð0;ΣyjxÞ. Here, βt ¼ ΣyxΣ�1
xx and Σyjx ¼ Σyy � ΣyxΣ�1

xx Σxy .
In a model like (2), we assume that the variation in response y is

partly explained by the predictor x. However, in many situations, only a
subspace of the predictor space is relevant for the variation in the
response y. This space can be referred to as the relevant space of x and the
rest as irrelevant space. In a similar way, for a certain model, we can
assume that a subspace in the response space exists and contains the
information that the relevant space in predictor can explain (Fig. 1). Cook
et al. [7] and Cook and Zhang [8] have referred to the relevant space as
material space and the irrelevant space as immaterial space.

With an orthogonal transformation of y and x to latent variablesw and
z, respectively, by w ¼ Qy and z ¼ Rx, where Q and R are orthogonal
rotation matrices, an equivalent model to (1) in terms of the latent var-
iables can be written as,�
w
z

�
� N

��
μw
μz

�
;

�
Σww Σwz

Σzw Σzz

��
(3)

where, Σww and Σzz are the variance-covariance matrices of w and z,
respectively. Σzw is the covariance between z and w. μw and μz are the
mean vector of z and w respectively.

Here, the elements of w and z are the principal components of re-
sponses and predictors, which will respectively be referred to respec-
tively as “response components” and “predictor components”. The
column vectors of respective rotation matrices Q and R are the eigen-
vectors corresponding to these principal components. We can write a
linear model based on (3) as,

w¼ μw þ αt
�
z� μz

�þ τ (4)

where, αt
m�p

is a matrix of regression coefficients and τ is an error term

such that τ � N ð0;ΣwjzÞ.
Following the concept of relevant space, a subset of predictor com-

ponents can be imagined to span the predictor space. These components
can be regarded as relevant predictor components. Naes and Martens
[22] introduced the concept of relevant components which was explored
further by Helland [11], Næs and Helland [21], Helland and Almøy [13]
and Helland [12]. The corresponding eigenvectors were referred to as
relevant eigenvectors. A similar logic is introduced by Cook et al. [7] and
later by Cook et al. [5] as an envelope which is the space spanned by the
relevant eigenvectors [4, pp. 101].

In addition, various simulation studies have been performed with the
model based on the concept of relevant subspace. A simulation study by
Almøy [2] has used a single response simulation model based on reduced
regression and has compared some contemporary multivariate estima-
tors. In recent years Helland et al. [15], Sæbø et al. [26], Helland et al.

[14] and Rimal et al. [25] implemented similar simulation examples
similar to those we are discussing in this study. This paper, however,
presents an elaborate comparison of the prediction using multi-response
simulated linear model data. The properties of the simulated data are
varied through different levels of simulation-parameters based on an
experimental design. Rimal et al. [25] provide a detailed discussion of
the simulation model that we have adopted here. The following section
presents the estimators being compared in more detail.

3. Prediction methods

Partial least squares regression (PLS) and Principal component
regression (PCR) have been used in many disciplines such as chemo-
metrics, econometrics, bioinformatics and machine learning, where wide
predictor matrices, i.e. p (number or predictors)> n (number of obser-
vation) are common. These methods are popular in multivariate analysis,
especially for exploratory studies and predictions. In recent years, a
concept of envelope introduced by Cook et al. [6] based on the reduction
in the regression model was implemented for the development of
different estimators. This study compares these predictionmethods based
on their prediction performance on data simulated with different
controlled properties.

Principal Components Regression (PCR): Principal components are
the linear combinations of predictor variables such that the trans-
formation makes the new variables uncorrelated. In addition, the varia-
tion of the original dataset captured by the new variables is sorted in
descending order. In other words, each successive component captures
maximum variation left by the preceding components in predictor vari-
ables [18]. Principal components regression uses these principal com-
ponents as a new predictor to explain the variation in the response.

Partial Least Squares (PLS): Two variants of PLS: PLS1 and PLS2 are
used for comparison. The first one considers individual response vari-
ables separately, i.e. each response is predicted with a single response
model, while the latter considers all response variables together. In PLS
regression, the components are determined so as to maximize a covari-
ance between response and predictors [10]. Among other, there are three
main PLS algorithms NIPALS, SIMPLS and Kernel Algorithm all of which
removes the extracted information through deflation and makes the
resulting new variables orthogonal. The algorithms differ in the deflation
strategy and computation of various weight vectors [1] and here we have
used the kernel version of PLS. R-package pls [20] is used for both PCR
and PLS methods.

Envelopes: The envelope, introduced by Cook et al. [6], was first used
to define response envelope [7] as the smallest subspace in the response
space and must be a reducing subspace of Σyjx such that the span of
regression coefficients lies in that space. Since a multivariate linear
regression model contains relevant (material) and irrelevant (immate-
rial) variation in both response and predictor, the relevant part provides
information, while the irrelevant part increases the estimative variation.
The concept of the envelope uses the relevant part for estimation while
excluding the irrelevant part consequently increasing the efficiency of
the model [9].

The concept was later extended to the predictor space, where the
predictor envelope was defined [5]. Further Cook and Zhang [8] used
envelopes for joint reduction of the responses and predictors and argued
that this produced efficiency gains that were greater than those derived
by using individual envelopes for either the responses or the predictors
separately. All the variants of envelope estimations are based on
maximum likelihood estimation. Here we have used predictor envelope
(Xenv) and simultaneous envelope (Senv) for the comparison. R-package
Renvlp [19] is used for both Xenv and Senv methods.

3.1. Modification in envelope estimation

Since envelope estimators (Xenv and Senv) are based on maximum
likelihood estimation (MLE), it fails to estimate in the case of wideFig. 1. Relevant space in a regression model.
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matrices, i.e. p > n. To incorporate these methods in our comparison, we
have used the principal components ðzÞ of the predictor variables ðxÞ as
predictors, using the required number of components for capturing
97.5% of the variation in x for the designs where p > n. The new set of
variables zwere used for envelope estimation. The regression coefficients
ðbαÞ corresponding to these new variables z were transformed back to
obtain coefficients for each predictor variabl

bβ ¼ ekcαk

where ek is a matrix of eigenvectors with the first k number of compo-
nents. Only simultaneous envelope allows to specify the dimension of
response envelope and all the simulation is based on a single latent
dimension of response, so it is fixed at two in the simulation study. In the
case of Senv, when the envelope dimension for response is the same as
the number of responses, it degenerates to the Xenv method and if the
envelope dimension for the predictor is the same as the number of pre-
dictors, it degenerates to the standardmultivariate linear regression [19].

4. Experimental design

This study compares prediction methods based on their prediction
ability. Data with specific properties are simulated, some of which are
easier to predict than others. These data are simulated using the R-
package simrel, which is discussed in Sæbø et al. [26] and Rimal et al.
[25]. Here we have used four different factors to vary the property of the
data: a) Number of predictors (p), b) Multicollinearity in predictor var-
iables (gamma), c) Correlation in response variables (eta) and d) position
of predictor components relevant for the response (relpos). Using two
levels of p, gamma and relpos and four levels of eta, 32 sets of distinct
properties are designed for the simulation.

Number of predictors: To observe the performance of the methods
on tall and wide predictor matrices, 20 and 250 predictor variables are
simulated with the number of observations fixed at 100. Parameter p
controls these properties in the simrel function.

Multicollinearity in predictor variables: Highly collinear pre-
dictors can be explained completely by a few components. The parameter
gamma (γ) in simrel controls decline in the eigenvalues of the predictor
variables as (5).

λi ¼ e�γði�1Þ; γ > 0 and i ¼ 1; 2;…; p (5)

Here, λi; i ¼ 1; 2;…p are eigenvalues of the predictor variables. We
have used 0.2 and 0.9 as different levels of gamma. The higher the value
of gamma, the higher the multicollinearity will be, and vice versa. In our
simulations, the higher and lower gamma values corresponded to the
maximum correlation between the predictors equal to 0.990 and 0.709,
respectively, in the case of p ¼ 20 variables. In the case of p ¼ 250 the

corresponding values for the maximum correlation were 0.998 to 0.923.
Correlation in response variables: Correlation among response

variables has been explored to a lesser extent. Here we have tried to
explore that part with four levels of correlation in the response variables.
We have used the eta (η) parameter of simrel for controlling the decline in
eigenvalues corresponding to the response variables as (6).

κj ¼ e�ηðj�1Þ; η > 0 and j ¼ 1; 2;…;m (6)

Here, κj; i ¼ 1;2;…m are the eigenvalues of the response variables
and m is the number of response variables. We have used 0, 0.4, 0.8 and
1.2 as different levels of eta. The larger the value of eta, the larger will be
the correlation will be between response variables and vice versa. In our
simulation, the different levels of eta from small to large correspond to
the maximum correlation of 0, 0.442, 0.729 and 0.878 between the
response variables respectively.

Position of predictor components relevant to the response: The
principal components of the predictors are ordered. The first principal
component captures most of the variation in the predictors. The second
captures most of the remainder left by the first principal component and
so on. In highly collinear predictors, the variation captured by the first
few components is relatively high. However, if those components are not
relevant for the response, prediction becomes difficult [13]. Here, two
levels of the positions of these relevant components are used as 1, 2, 3, 4
and 5, 6, 7, 8.

Moreover, a complete factorial design from the levels of the above
parameters gave us 32 designs. Each design is associated with a dataset
having unique properties. Fig. 2, shows all the designs. For each design
and prediction method, 50 datasets were simulated as replicates. In total,
there were 5 � 32� 50, i.e. 8000 simulated datasets.

Common parameters: Each dataset was simulated with n ¼ 100
number of observation and m ¼ 4 response variables. Furthermore, the
coefficient of determination corresponding to each response components
in all the designs is set to 0.8. The informative and uninformative latent
components are generated according to (3). Since Σww and Σzz are di-
agonal matrices, the components are independent within w and z, but
dependence between the latent spaces of x and y are secured through the
non-zero elements of Σwz with positions defined by the relpos and ypos
parameters. The latent components are subsequently rotated to obtain
the population covariance structure of response and predictor variables.
In addition, we have assumed that there is only one informative response
component. Hence, the informative response component after the
orthogonal rotation together with three uninformative response com-
ponents generates four response variables. This spreads out the infor-
mation in all simulated response variables. For further details on the
simulation tool, see Ref. [25].

An example of simulation parameters for the first design is as follows:
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The covariance structure of the data simulated with this design in
Fig. 3 shows that the predictor components at positions 1, 2, 3 and 4 are
relevant for the first response component. After the rotation with an
orthogonal rotation matrix, all predictor variables are somewhat relevant
for all response variables, satisfying other desired properties such as
multicollinearity and coefficient of determination. For the same design,
Fig. 4 (top left) shows that the predictor components 1, 2, 3 and 4 are
relevant for the first response component. All other predictor compo-
nents are irrelevant and all other response components are uninforma-
tive. However, due to the orthogonal rotation of the informative response
component together with uninformative response components, all
response variables in the population have similar covariance with the
relevant predictor components (Fig. 4 (top right)). The sample co-
variances between the predictor components and predictor variables
with response variables are shown in Fig. 4 (bottom left) and (bottom
right) respectively.

A similar description can be made for all 32 designs, where each of
the designs holds the properties of the data they simulate. These data are
used by the prediction methods discussed in the previous section. Each
prediction method is given independently simulated datasets in order to
give them an equal opportunity to capture the dynamics in the data.

5. Basis of comparison

This study focuses mainly on the prediction performance of the

methods with an emphasis specifically on the interaction between the
properties of the data controlled by the simulation parameters and the
prediction methods. The prediction performance is measured based on
the following:

a) The average prediction error that a method can give using an arbi-
trary number of components and

b) The average number of components used by the method to give the
minimum prediction error

Let us define,

P E ijkl ¼ 1
σ2
yijjx

E
h�
βij � bβijkl

�tðΣxxÞi
�
βij � bβijkl

�iþ 1 (7)

as a prediction error of response j ¼ 1;…4 for a given design i ¼ 1;2;…
32 and method k ¼ 1ðPCRÞ;…5ðSenvÞ using l ¼ 0;…10 number of
components. Here, ðΣxxÞi is the true covariance matrix of the predictors,
unique for a particular design i and σ2

yjjx for response j ¼ 1;…m is the true

model error. Here prediction error is scaled by the true model error to
remove the effects of influencing residual variances. Since both the

expectation and the variance of bβ are unknown, the prediction error is
estimated using data from 50 replications as follows,

Fig. 2. Experimental Design of simulation parameters. Each point represents a unique data property.

Fig. 3. (left) Covariance structure of latent components (right) Covariance structure of predictor and response.
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dP E ijkl ¼ 1
σ2
yijjx

X50
r¼0

h�
βij � bβijklr

�tðΣxxÞi
�
βij � bβ ijklr

�iþ 1 (8)

where dP E ijkl is the estimated prediction error averaged over r ¼ 50
replicates.

The following section focuses on the data for the estimation of these
prediction errors that are used for the two models discussed above in a)
and b) of this section.

6. Data preparation

A dataset for estimating (7) is obtained from simulation which con-
tains a) five factors corresponding to simulation parameters, b) predic-
tion methods, c) number of components, d) replications and e) prediction
error for four responses. The prediction error is computed using predictor
components ranging from 0 to 10 for every 50 replicates as,

� dP E ∘
�
ijklr

¼ 1
σ2
yijjx

h�
βij � bβijklr

�tðΣxxÞi
�
βij � bβ ijklr

�iþ 1

Thus there are 32 (designs) � 5 (methods) � 11 (number of com-
ponents) � 50 (replications), i.e. 88000 observations corresponding to
the response variables from Y1 to Y4.

Since our discussions focus on the average minimum prediction error
that a method can obtain and the average number of components they
use to get the minimum prediction error in each replicates, the dataset

discussed above is summarized as constructing the following two smaller
datasets. Let us call them Error Dataset and Component Dataset.

Error Dataset: For each prediction method, design and response, an
average prediction error is computed over all replicates for each
component. Next, a component that gives the minimum of this average
prediction error is selected, i.e.,

l∘ ¼ argmin
l

"
1
50

X50
i¼1

ðP E ∘Þijklr
#

(9)

Using the component l∘, a dataset of ðP E ∘Þijkl∘r is used as the Error
Dataset. Let uð8000�4Þ ¼ ðujÞ for j ¼ 1;…4 be the outcome variables
measuring the prediction error corresponding to the response number j in
the context of this dataset.

Component Dataset: The number of components that gives the mini-
mum prediction error in each replication is referred to as the Component
Dataset, i.e.,

l∘ ¼ argmin
l

�
P E ijklr

	
(10)

Here l∘ is the number of components that gives minimum prediction
error ðP E ∘Þijklr for design i, response j, method k and replicate r. Let
vð8000�4Þ ¼ ðvjÞ for j ¼ 1;…4 be the outcome variables measuring the
number of components used for minimum prediction error correspond-
ing to the response j in the context of this dataset.

Fig. 4. Expected Scaled absolute covariance between predictor components and response components (top left). Expected Scaled absolute covariance between
predictor components and response variables (top right). Sample scaled absolute covariance between predictor components and response variables (bottom left).
Sample scaled absolute covariance between predictor variables and response variables (bottom right). The bar graph in the background represents eigenvalues
corresponding to each component in the population (top plots) and in the sample (bottom plots). One can compare the top-right plot (true covariance of the pop-
ulation) with bottom-left (covariance in the simulated data) which shows a similar pattern for different components.
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7. Exploration

This section explores the variation in the error dataset and the
component dataset for which we have used Principal Component Analysis
(PCA). Let tu and tv be the principal component score sets corresponding
to PCA run on the u and v matrices respectively. The scores density in
Fig. 5 corresponds to the first principal component of u, i.e. the first
column of tu.

Since higher prediction errors correspond to high scores, the plot
shows that the PCR, PLS1 and PLS2 methods are influenced by the two
levels of the position of relevant predictor components. When the rele-
vant predictors are at positions 5, 6, 7, 8, the eigenvalues corresponding
to them are relatively smaller. This also suggests that PCR, PLS1 and PLS2
depend greatly on the position of the relevant components, and the
variation of these components affects their prediction performance.
However, the envelope methods appeared to be less influenced by relpos
in this regard.

In addition, the plot also shows that the effect of gamma, i.e., the level
of multicollinearity, has a lesser effect when the relevant predictors are at
positions 1, 2, 3, 4. This indicates that the methods are somewhat robust
for handling collinear predictors. Nevertheless, when the relevant pre-
dictors are at positions 5, 6, 7, 8, high multicollinearity results in a small
variance of these relevant components and consequently yields poor
prediction. This is in accordance with the findings of Helland and Almøy
[13].

Furthermore, the density curves for PCR, PLS1 and PLS2 are similar
for different levels of eta, i.e., the factor controlling the correlation be-
tween responses. However, the envelope models have been shown to
have distinct interactions between the positions of relevant components
(relpos) and eta. Here higher levels of eta have yielded higher scores and
clear separation between two levels of relpos. In the case of high multi-
collinearity, envelope methods have resulted in some large outliers
indicating that in some cases that the methods can result in giving an
unexpected prediction.

In Fig. 6, the higher scores suggest that methods have used a larger

number of components to give minimum prediction error. The plot also
shows that the relevant predictor components at 5, 6, 7, 8 give larger
prediction errors than those in positions 1, 2, 3, 4. The pattern is more
distinct in large multicollinearity cases and PCR and PLS methods. Both
the envelopemethods have shown equally enhanced performance at both
levels of relpos and gamma. However, for data with low multicollinearity
(γ ¼ 0:2), the envelope methods have used a lesser number of compo-
nents on average than in the high multicollinearity cases to achieve
minimum prediction error.

8. Statistical analysis

This section has modelled the error data and the component data as a
function of the simulation parameters to better understand the connec-
tion between data properties and prediction methods using multivariate
analysis of variation (MANOVA).

Let us consider a model with third order interaction of the simulation
parameters (p, gamma, eta and relpos) and Methods as in (11) and (12)
using datasets u and v, respectively. Let us refer to them as the error model
and the component model.

Error Model:

uabcdef ¼ μu þ ðpa þ gammab þ etac þ relposd þMethodseÞ3 þ ðεuÞabcdef
(11)

Component Model:

vabcdef ¼ μv þ ðpa þ gammab þ etac þ relposd þMethodseÞ3 þ ðεvÞabcdef (12)

where, uabcdef is a vector of prediction errors in the error model and vabcdef
is a vector of the number of components used by a method to obtain
minimum prediction error in the component model.

Although there are several test-statistics for MANOVA, all are essen-
tially equivalent for large samples [17]. Here we will use Pillai's trace
statistic which is defined as,

Fig. 5. Scores density corresponding to first principal component of error dataset (u) subdivided by methods, gamma and eta and grouped by relpos.
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Pillai statistic¼ tr
�ðEþHÞ�1H

	 ¼ Xm
i¼1

νi
1þ νi

(13)

Here the matrix H holds between-sum-of-squares and sum-of-
products for each of the predictors. The matrix E has a within the sum
of squares and sum of products for each of the predictors. νi represents
the eigenvalues corresponding to E�1H [24].

For both the models (11) and (12), Pillai's trace statistic is used for
accessing the effect of each factor and returns an F-value for the strength
of their significance. Fig. 7 plots the Pillai's trace statistics as bars with
corresponding F-values as text labels for both models.

Error Model: Fig. 7 (left) shows the Pillai's trace statistic for factors of
the error model. The main effect of Method followed by relpos, eta and
gamma have the largest influence on the model. A highly significant two-
factor interaction of Method with gamma followed by the relpos and eta
clearly shows that methods perform differently for different levels of
these data properties. The significant third order interaction between
Method, eta and gamma suggest that the performance of a method differs
for a given level of multicollinearity and the correlation between the
responses. Since only some methods consider modelling predictor and
response together, the prediction is affected by the level of correlation
between the responses (eta) for a given method.

Component Model: Fig. 7 (right) shows the Pillai's trace statistic for
factors of the component model. As in the error model, the main effects of
the Method, relpos, gamma and eta have a significantly large effect on
the number of components that a method has used to obtain minimum
prediction error. The two-factor interactions of Method with simulation
parameters are larger in this case. This shows that the Methods and these
interactions have a larger effect on the use of the number of component
than the prediction error itself. In addition, a similar significant high
third-order interaction as found in the error model is also observed in this
model.

The following section will continue to explore the effects of different
levels of the factors in the case of these interactions.

8.1. Effect analysis of error model

The large difference in the prediction error for the envelope models in
Fig. 8 (left) is intensified when the position of the relevant predictor is at
5, 6, 7, 8. The results also show that the envelope methods are more
sensitive to the levels of eta than the rest of the methods. In the case of
PCR and PLS, the difference in the effect of levels of eta is small.

In Fig. 8 (right), we can see that the multicollinearity (controlled by
gamma) has affected all the methods. However, envelope methods have
better performance on low multicollinearity, as opposed to high multi-
collinearity, and PCR, PLS1 and PLS2 are robust for high multi-
collinearity. Despite handling high multicollinearity, these methods have
higher prediction error in both cases of multicollinearity than the enve-
lope methods.

8.2. Effect analysis of the component model

Unlike for prediction errors, Fig. 9 (left) shows that the number of
components used by the methods to obtain minimum prediction error is
less affected by the levels of eta. All methods appear to use on average
more components when eta increases. Envelope methods are able to
obtain minimum prediction error by using components ranging from 1 to
3 in both the cases of relpos. This value is much higher in the case of PCR
as its prediction is based only on the principal components of the pre-
dictor matrix. The number of components used by this method ranges
from 3 to 5 when relevant components are at positions 1, 2, 3, 4 and 5 to 8
when relevant components are at positions 5, 6, 7, 8.

When relevant components are at position 5, 6, 7, 8, the eigenvalues
of relevant predictors become smaller and responses are relatively diffi-
cult to predict. This becomes more critical for high multicollinearity
cases. Fig. 9 (right) shows that the envelope methods are less influenced
by the level of relpos and are particularly better in achieving minimum
prediction error using a fewer number of components than other
methods.

Fig. 6. Score density corresponding to the first principal component of the component dataset (v) subdivided by methods, gamma and eta and grouped by relpos.
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Fig. 8. Effect plot of some interactions of the multivariate linear model of prediction error.

Fig. 7. Pillai Statistic and F-value for the MANOVA model. The bar represents the Pillai Statistic and the text labels are F-value for the corresponding factor.
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9. Examples

In addition to the analysis with the simulated data, the following two
examples explore the prediction performance of the methods using real
datasets. Since both examples have wide predictor matrices, principal
components explaining 97.5% of the variation in them are used for en-
velope methods. The coefficients were transformed back after the
estimation.

9.1. Raman spectra analysis of contents of polyunsaturated fatty acids
(PUFA)

This dataset contains 44 training samples and 25 test samples of fatty
acid information expressed as a) percentage of total sample weight and b)
the percentage of total fat content. The dataset is borrowed from Næs
et al. [23] where more information can be found. The samples were
analysed using Raman spectroscopy from which 1096 wavelength

variables were obtained as predictors. Raman spectroscopy provides
detailed chemical information from minor components in food. The aim
of this example is to compare how well the prediction methods that we
have considered are able to predict the contents of PUFA using these
Raman spectra.

Fig. 10 (left) shows that the first few predictor components are
somewhat correlated with response variables. In addition, the most
variation in predictors is explained by less than five components (mid-
dle). Further, the response variables are highly correlated, suggesting
that a single latent dimension explains most of the variation (right). We
may therefore also believe that the relevant latent space in the response
matrix is of dimension one. This resembles Design 19 (Fig. 2) from our
simulation.

Using a range of components from 1 to 15, regression models were
fitted using each of the methods. The fitted models were used to predict
the test observation, and the root mean squared error of prediction
(RMSEP) was calculated. Fig. 11 shows that PLS2 obtained a minimum

Fig. 9. Effect plot of some interactions of the multivariate linear model of the number of components to get minimum prediction error.

Fig. 10. (Left) Bar represents the eigenvalues corresponding to Raman Spectra. The points and line are the covariances between response and the principal com-
ponents of Raman Spectra. All the values are normalized to scale from 0 to 1. (Middle) Cumulative sum of eigenvalues corresponding to predictors. (Right) The
cumulative sum of eigenvalues corresponding to responses. The top and bottom row corresponds to test and training datasets respectively.
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prediction error of 3.783 using 9 components in the case of response %
Pufa, while PLS1 obtained a minimum prediction error of 1.308 using 11
components in the case of response PUFA%emul. However, the figure
also shows that both envelope methods have reached to almost minimum
prediction error in fewer number of components. This pattern is also
visible in the simulation results (Fig. 9).

9.2. Example-2: NIR spectra of biscuit dough

The dataset consists of 700 wavelengths of NIR spectra
(1100–2498 nm in steps of 2 nm) that were used as predictor variables.
There are four response variables corresponding to the yield percentages
of (a) fat, (b) sucrose, (c) flour and (d) water. The measurements were
taken from 40 training observation of biscuit dough. A separate set of 32
samples created and measured on different occasions were used as test
observations. The dataset is borrowed from Indahl [16] where further
information can be obtained.

Fig. 12 (left) shows that the first predictor component has the largest
variance and also has large covariance with all response variables. The
second component, however, has larger variance (middle) than the suc-
ceeding components but has a small covariance with all the responses,

which indicates that the component is less relevant for any of the re-
sponses. In addition, two response components have explained most of
the variation in response variables (right). This structure is also some-
what similar to Design 19, although it is uncertain whether the dimen-
sion of the relevant space in the response matrix is larger than one.

Fig. 13 (corresponding to Fig. 11) shows the root mean squared error
for both test and train prediction of the biscuit dough data. Here four
different methods have minimum test prediction error for the four re-
sponses. As the structure of the data is similar to that of the first example,
the pattern in the prediction is also similar for all methods.

The prediction performance on the test data of the envelope methods
appears to be more stable compared to the PCR and PLS methods.
Furthermore, the envelope methods achieve good performance generally
using fewer components, which is in accordance with Fig. 6.

10. Discussions and conclusion

Analysis using both simulated data and real data has shown that the
envelope methods are more stable, less influenced by relpos and gamma
and in general, performed better than PCR and PLS methods. These
methods are also found to be less dependent on the number of

Fig. 11. Prediction Error of different prediction methods using different number of components.

Fig. 12. (Left) Bar represents the eigenvalues corresponding to NIR Spectra. The points and line are the covariances between response and the principal components of
NIR Spectra. All the values are normalized to scale from 0 to 1. (Middle) Cumulative sum of eigenvalues corresponding to predictors. (Right) The cumulative sum of
eigenvalues corresponding to responses.
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components.
Since the facet in Figs. 5 and 6 have their own scales, despite having

some large prediction errors seen at the right tail, envelope methods still
have a smaller prediction error and have used a fewer number of com-
ponents than the other methods.

The envelope methods may have this problem of being caught in a
local optimum of the objective function. If these cases of sub-optimal
convergence were identified and rerun to obtain better convergence,
the envelope results may have become even better. Particularly in the
case of the simultaneous envelope, since users can specify the number of
dimension for the response envelope, the method can leverage the rele-
vant space of response while PCR, PLS and Xenv are constrained to play
only on predictor space.

Furthermore, we have fixed the coefficient of determination (R2) as a
constant throughout all the designs. Initial simulations (not shown)
indicated that low R2 affects all methods in a similar manner and that the
MANOVA is highly dominated by R2. Keeping the value of R2 fixed has
allowed us to analyze other factors properly.

Two clear comments can be made about the effect of correlation of
response on the prediction methods. The highly correlated response has
shown the highest prediction error in general and the effect is most
distinct in envelope methods. Since the envelope methods identify the
relevant space as the span of relevant eigenvectors, the methods are able
to obtain the minimum average prediction error by using a lesser number
of components for all levels of eta.

To our knowledge, the effect of correlation in the response on PCR
and PLS methods has been explored only to a limited extent. In this
regards, it is interesting to see that these methods have applied a large
number of components and returned a larger prediction error than en-
velope methods in the case of highly correlated responses. To fully un-
derstand the effect of eta, it is necessary to study the estimation
performance of these methods with different numbers of components.

In addition, since using principal components or actual variables as

predictors in envelope methods has shown similar results, we have used
principal components that have explained 97.5% of the variation, as
mentioned previously, in the cases of envelope methods for the designs
where p > n. Using 97.5% is slightly arbitrary here, but for the chosen
simulation designs this proportion captured a fair amount of variations in
predictor variables and also reduce the dimension significantly while
enabling us to use envelope methods in all settings. The analyst should
choose this number to balance the explained amount of variation to the
number of components which is practical for model fitting using the
envelope model. The methodology used to adapt envelopes to settings in
which p > n is, in fact, the same as that used by PLS: reduce by principal
components, run the method, and then back transform to the original
scale. The minor relative impact of p shown in Fig. 7 suggests that this
adaptation method is useful.

The results from this study will help researchers to understand these
methods for their performance in various linear model data and
encourage them to use newly developed methods such as the envelopes.
Since this study has focused entirely on prediction performance, further
analysis of the estimative properties of these methods is required. A study
of estimation error and the performance of methods on the non-optimal
number of components can give a deeper understanding of these
methods.

A shiny application [3] is available at http://therimalaya.shin
yapps.io/Comparison where all the results related to this study can be
visualized. In addition, a GitHub repository at https://github.com/ther
imalaya/03-prediction-comparison can be used to reproduce this study.
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Abstract

Prediction performance does not always reflect the estimation behaviour of a method.

High error in estimation may necessarily not result in high prediction error, but can lead to

an unreliable prediction if test data lie in a slightly different subspace than the training data.

In addition, high estimation error often leads to unstable estimates, and consequently,

the estimated effect of predictors on the response can not have a valid interpretation.

Many research fields show more interest in the effect of predictor variables than actual

prediction performance. This study compares some newly-developed (envelope) and

well-established (PCR, PLS) estimation methods using simulated data with specifically

designed properties such as Multicollinearity in the predictor variables, the correlation

between multiple responses and the position of principal components corresponding to

predictors that are relevant for the response. This study aims to give some insights into

these methods and help the researchers to understand and use them for further study.

Here we have, not surprisingly, found that no single method is superior to others, but

each has its strength for some specific nature of data. In addition, the newly developed

envelope method has shown impressive results in finding relevant information from data

using significantly fewer components than the other methods.
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1. Introduction

Estimation of parameters in linear regression models is an integral part of many research

studies. Research fields such as social science, econometrics, chemometrics, psychology

and medicine show more interest in measuring the impact of certain indicators or variable

than performing prediction. Such studies have a large influence on people’s perception

and also help in policy-making and decisions. A transparent, valid and robust research is

critical to improving the trust in the findings of modern data science research (High-Level

Expert Group on Artificial Intelligence, 2019). This makes the assessment of measurement

error, inference and prediction even more essential.

Technology has facilitated researchers to collect large amounts of data, however, often

such data either contains irrelevant information or are highly redundant. Researchers

are devising new estimators to extract information and identify their inter-relationship.

Some estimators are robust towards fixing the multicollinearity (redundancy) problem,

while others are targeted to model only the relevant information contained in the response

variable.

This study extends (Rimal et al., 2019) with a similar multi-response, linear regression

model setting and compares some well-established estimators such as Principal Compo-

nents Regression (PCR), Partial Least Squares (PLSR) Regression, together with two new

methods based on envelope estimation: Envelope estimation in predictor space (Xenv)

(Cook et al., 2010) and simultaneous estimation of the envelope (Senv) (Cook and Zhang,

2015). The estimation processes of these methods are discussed in the Estimation Methods

section. The comparison is aimed at the estimation performance of these methods using

multi-response simulated data from a linear model with controlled properties. The prop-

erties include the number of predictors, level of multicollinearity, the correlation between

different response variables and the position of relevant predictor components. These

properties are explained in the Experimental Design section together with the strategy

behind the simulation and data model.
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Relevant space within a model
A concept for reduction of regression models

Response (Y) Predictor (X)

Redundant Y
information

Irrelevant X−Space
 redundant information and noise

X and Y envelope/
 Relevant Spaces

Figure 1: Relevant space in a regression model

2. Simulation Model

As a follow-up, this study will continue using the same simulation model as used by

Rimal et al. (2019). The data are simulated from a multivariate normal distribution where

we assume that the variation in a response vector-variable y is partly explained by the

predictor vector-variable x. However, in many situations, only a subspace of the predictor

space is relevant for the variation in the response y. This space can be referred to as the

relevant space of x and the rest as irrelevant space. In a similar way, for a certain model,

we can assume that a subspace in the response space exists and contains the information

that the relevant space in predictor can explain (Figure 1).

Following the concept of relevant space, a subset of predictor components can be imagined

to span the predictor space. These components can be regarded as relevant predictor

components. Naes and Martens (1985) introduced the concept of relevant components,

which was explored further by Helland (1990), Næs and Helland (1993), Helland and
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Almøy (1994) and Helland (2000). The corresponding eigenvectors were referred to as

relevant eigenvectors. A similar logic is introduced by Cook et al. (2010) and later by

Cook et al. (2013) as an envelope, as space spanned by the relevant eigenvectors (Cook,

2018, p.101). See Rimal et al. (2018), Sæbø et al. (2015) and Rimal et al. (2019) for in-depth

background on the model.

3. Estimation Methods

Consider a joint distribution of y and x with corresponding mean vectors µy and µx as,


y

x


 ∼ N




µy

µx


 ,


Σyy Σyx

Σxy Σxx




 (1)

Here, Σxx and Σyy are variance-covariance of x and y respectively and Σxy = Σt
yx is the

covariance matrix of x and y. Let Sxx, Syy and Sxy = St
yx be the respective estimates of

these matrices. A linear regression model based on (1) is

y = µy + βt (x − µx) + ε (2)

where β = Σ−1
xx Σxy is the regression coefficients that define the relationship between x and

y. With n samples, the least-squares estimate of β can be written as β̂ = S−1
xx Sxy. Here, as

in many situations, the estimator Sxx for Σxx can either be non-invertible or have small

eigenvalues. In addition, Sxy, the estimator of Σxy, is often influenced by a high level of

noise in the data. In order to solve these problems, various methods have adopted the

concept of relevant space to identify the relevant components through the reduction of the

dimension in either x or y or both. Some of the methods we have used for comparison are

discussed below.

Principal Components Regression (PCR) uses k eigenvectors of Sxx as the number of compo-

nents to span the reduced relevant space. Since PCR is based on capturing the maximum

variation in predictors for every component it has added to the model, this method does

not consider the response structure in the model reduction (Jolliffe, 2002). In addition, if
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the relevant components are not corresponding to the largest eigenvalues, the method

requires a larger number of components to make precise prediction (Almøy, 1996).

Partial Least Squares (PLS) regression aims to maximize the covariance between the pre-

dictor and response components (scores) (de Jong, 1993). Broadly speaking, PLS can

be divided into PLS1 and PLS2 where the former tries to model the response variables

individually, whereas the latter uses all the response variable together while modelling.

Among the three widely used algorithms NIPALS (Wold, 1975), SIMPLS (de Jong, 1993)

and KernelPLS (Lindgren et al., 1993), we will be using KernelPLS for this study, which

gives equivalent results to the classical NIPALS algorithm and is default in R-package pls

(Mevik and Wehrens, 2007).

Envelopes was first introduced by (Cook et al., 2007) as the smallest subspace that includes

the span of true regression coefficients. The Predictor Envelope (Xenv) identifies the enve-

lope as a smallest subspace in the predictor space, by separating the predictor covariance

Σxx into relevant (material) and irrelevant (immaterial) parts, such that the response y is

uncorrelated with the irrelevant part given the relevant one. In addition, relevant and

irrelevant parts are also uncorrelated. Such separation of the covariance matrix is made

using the data through the optimization of an objective function. Further, the regression

coefficients are estimated using only the relevant part. Cook et al. (2010), Cook et al. (2013)

and Cook (2018) have extensively discussed the foundation and various mathematical

constructs together with properties related to the Predictor Envelope.

Simultaneous Predictor-Response Envelope (Senv) implements the envelope in both the

response and the predictor space. It separates the material and immaterial part in the

response space and the predictor space such that the material part of the response does not

correlate with the immaterial part of the predictor and the immaterial part of the response

does not correlate with the material part of the predictor. The regression coefficients are

computed using only the material part of the response and predictor spaces. The number

of components specified in both of these methods during the fit influences the separation

of these spaces. If the number of response components equals the number of responses,

simultaneous envelope reduces to the predictor envelope, and if the number of predictor
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components equals the number of predictors, the result will be equivalent to ordinary

least squares. Cook and Zhang (2015) and Cook (2018) have discussed the method in

detail. Further, Helland et al. (2018) have discussed how the population models of PCR,

PLS and Xenv are equivalent.

4. Experimental Design

An R (R Core Team, 2018) package simrel (Rimal et al., 2018; Sæbø et al., 2015) is used to

simulate the data for comparison. In the simulation, the number of observations is fixed at

n = 100, and the following four simulation parameters are varied to obtain data with a

wide range of properties.

Number of predictors: (p) In order to cover both tall (n > p) and wide (p > n) cases,

p = 20 and p = 250 number of predictors are simulated.

Multicollinearity in predictor variables: (gamma) A parameter gamma (γ) controls the ex-

ponential decline of eigenvalues in Σxx(λi, i = 1, . . . p) as,

λi = e−γ(i−1), γ > 0 and i = 1, 2, . . . p (3)

Two levels, 0.2 and 0.9, of gamma are used for simulation so that level 0.2 simulates

data with low multicollinearity and 0.9 simulates the data with high multicollinearity

in x respectively.

Position of relevant components: (relpos) Initial principal components of a non-

singular covariance matrix have higher variance than the later ones. If the principal

components corresponding to predictors with larger variation are not relevant for a

response, this will just increase the noise level in the data. Here we will use two

different levels of a position index of predictor components (relpos): a) 1, 2, 3, 4 and

b) 5, 6, 7, 8. Predictor components irrelevant for a response make prediction difficult

(Helland and Almøy, 1994). When combined with multicollinearity, this factor can

create both easy and difficult cases for both estimation and prediction.
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Figure 2: Experimental Design of simulation parameters. Each point represents an unique data property.

Correlation in response variables: (eta) Some estimators also use the dependence struc-

ture of response for estimation. Here the correlation between the responses is varied

through a simulation parameter eta (η). The parameter controls the exponential

decline of eigenvalues κj, j = 1, . . . m( number of responses) of Σyy as,

ηj = e−κ(j−1), κ > 0 and j = 1, 2, . . . m (4)

Four levels 0, 0.4, 0.8 and 1.2 of eta are used in the simulations. Level κ = 0 gives

data with uncorrelated response variables, while κ = 1.2 gives highly correlated

response variables.

Here we have assumed that there is only one informative response component. Hence the

relevant space of the response matrix has dimension one. In the final dataset all predictors

together span the same space as the relevant predictor components and all responses

together span the same space as the one informative response component. In addition, the

coefficient of determination is fixed at 0.8 for all datasets.

A complete factorial design is adopted using the different levels of factors discussed above

to create 32 designs (Figure 2), each of which gives datasets with unique properties. From

each of these design and each estimation method, 50 different datasets are simulated so

that each of them has the same true population structure. In total, 5 × 32 × 50 i.e., 8000
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datasets are simulated.
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Figure 3: Covariance between predictor components and each response variable in the population (top), and
in the simulated data (bottom) for four different designs. The bars in the background represent the variance
of the corresponding components (eigenvalues).

The simulation properties are directly reflected in the simulated data. For example, in

Figure 3, design pairs 1 and 14 as well as 6 and 9 differ in their properties only in terms

of position of relevant predictor components, while the design pairs 1 and 6 as well as

9 and 14 differ only in-terms of the level of multicollinearity. The population properties

are also reflected in the simulated samples (bottom row Figure ??). The combination of

these factor levels creates datasets that are easy or difficult with regard to estimation and

prediction. We observe from Figure 3 that it may be difficult to infer the structure of the

latent relevant space of x from the estimated principal components and their estimated

covariances with the observed responses.
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5. Basis of Comparison

The focus of this study is to extend the exploration of Rimal et al. (2019) to compare the

estimation performance of PCR, PLS1, PLS2, Xenv and Senv methods. The performance is

measured on the basis of,

a) average estimation error computed as in (6)

b) the average number of components used by the methods to give minimum estimation

error

Let us define the expected estimation error as

MSE
(

β̂
)

ijkl
= E

[
1

σ2
yj

(
βij − β̂ijkl

)t (
βij − β̂ijkl

)]
(5)

for response j = 1, . . . 4 in a given design i = 1, 2, . . . 32 and method k =

1(PCR), . . . 5(Senv) using l = 0, . . . 10 number of components. Here σ2
yj

is the

variance of response j. Since both the expectation and the variance of β̂ are unknown, the

estimation error is estimated using data from 50 replications as follows,

̂
MSE

(
β̂
)

ijkl
=

1
50

50

∑
r=1

[
̂

MSE◦
(

β̂
)

ijklr

]
(6)

where,
̂

MSE
(

β̂
)

ijkl
is the estimated prediction error averaged over r = 50 replicates and,

̂
MSE◦

(
β̂
)

ijklr
=

1
σ2

yj

[(
βij − β̂ijklr

)t (
βij − β̂ijklr

)]

Our further discussion revolves around what we will refer to as the Error Dataset and

the Component Dataset, as in the prediction comparison paper Rimal et al. (2019). For a

given estimation method, design, and response, the component that gives the minimum
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estimation error averaged over all replicates is selected as,

l◦ = argmin
l

[
1

50

50

∑
r=1

̂
MSE◦

(
β̂
)

r

]
(7)

Here we have skipped further indices on β̂ for brevity. The estimation error
̂

MSE◦
(

β̂
)

for every method, design and response corresponding to component l◦, computed as

(7), is then regarded as the error dataset in the subsequent analysis. Let u8000×4 = (uj),

where uj is the jth column of u denoting the estimation error corresponding to response

j = 1, . . . 4 in the context of this dataset. Further, let the number of components that

result in minimum estimation error in each replication and computed as (8), comprise the

component dataset. Let v8000×4 = (vj) where vj is the jth column of v denoting the outcome

variable measuring the number of components used to obtain minimum estimation error

corresponding to response j = 1, . . . 4.

l◦ = argmin
l

[
̂

MSE◦
(

β̂
)]

(8)

6. Exploration

In this section we explore the variation in the error dataset and the component dataset by

means of Principal Component Analysis (PCA). Let tu and tv be matrices holding the

column vectors of the principal component scores corresponding to the u and v matrices,

respectively. The density of the scores in Figure 4 and Figure 5 correspond to the first

principal component of u and v, i.e. the first column of tu and tv respectively. Here higher

scores correspond to larger estimation error and vice versa.

Figure 4 shows a clear difference in the effect of low and high multicollinearity on esti-

mation error. In the case of low multicollinearity (gamma: 0.2), the estimation errors are

in general smaller and have lesser variation compared to high multicollinearity (gamma:

0.9). In particular we observe that the envelope methods have small estimation errors in

the low multicollinearity cases compared to the other methods. On the other hand, the
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Figure 4: Scores density corresponding to first principal component of error dataset (u) subdivided by
methods, gamma and eta and grouped by relpos.

envelope methods tend to have increased estimation error in cases of highly correlated

responses (eta: 1.2), whereas there is no effect of this correlation in other methods.

Furthermore, position of the relevant predictor components has a noticeable effect on

estimation error for all methods. When relevant predictors are at position 5, 6, 7, 8, the

components at positions 1, 2, 3, 4, which carry most of the variation, become irrelevant.

These irrelevant components with large variation add noise to the model and consequently

increases the estimation error. The effect intensifies with highly collinear predictors

(gamma=0.9). Designs with high multicollinearity and relevant predictors at position 5, 6,

7, 8 are relatively difficult to model for all the methods. Although these difficult designs
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have a large effect on estimation error, their effect on prediction error is less influential

(Rimal et al., 2019).

In the case of the component dataset (Figure 5), PCR, PLS1 and PLS2 methods have in general

used a larger number of components in the case of high multicollinearity compared to low.

Surprisingly, the envelope methods (Senv and Xenv) have mostly used a distinctly smaller

number of components in both cases of multicollinearity compared to other methods.

The plot also shows that there is no clear effect of the correlation between response

variables (eta) on the number of components used to obtain minimum estimation error.
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Figure 5: Score density corresponding to the first principal component of component dataset (v) subdivided
by methods, gamma and eta and grouped by relpos.

A clear interaction between the position of relevant predictors and the multicollinearity,
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which is visible in the plot, suggests that the methods use a larger number of components

when the relevant components are at position 5, 6, 7, 8. Additionally, the use of components

escalate and the difference between the two levels of relpos becomes wider in the case of

high multicollinearity in the predictor variables. Such performance is also seen the case

of prediction error (See Rimal et al. (2019)), however, the number of components used

for optimization of prediction is smaller than in the case of estimation. Even when the

relevant components are at position 5, 6, 7, 8, the envelope methods, in contrast to other

methods, have used an almost similar number of components as in the case of relevant

components at position 1, 2, 3, 4. This shows that the envelope methods identify the

predictor space relevant to the response differently, from the other methods and with very

few numbers of latent components. This is particularly the case when multicollinearity in

x is high.

The following sub-section explores in particular the prediction and estimation errors and

the estimated regression coefficient of Simultaneous Envelope and Partial Least Squares

for a design having high multicollinearity, and with predictor components at positions 5,

6, 7, 8. Here we will use the design with n > p and two levels of correlation between the

responses. These correspond to Design-9 and Design-29 in our simulations.

Figure 7 shows a clear distinction between the modelling approach of PLS2 and Senv

methods for the same model based on Design 9 (top) and Design 29 (bottom). In both of the

designs, PLS2 has both minimum prediction error and minimum estimation error obtained

using seven to eight components and the estimated regression coefficients approximate the

true coefficients. In contrast, the Senv method has approached the minimum prediction

and minimum estimation error using one to two components and the corresponding

estimated regression coefficients approximate the true coefficients (Figure 6). Despite

having contrasted modelling results for a dataset with similar properties, the minimum

errors produced by them are comparable in the case of Design 9 (See Table 1). However,

in the case of Design 29, estimation error corresponding to PLS1 and envelope methods

are much higher than PCR and PLS2. It is interesting to see that despite having large

estimation error, the prediction error corresponding to the envelope methods are much
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Figure 6: Regression Coefficients (coef) estimated by PLS2 and Simultaneous Envelope methods on the data
based on Design 9 and 29.
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smaller in this design.

Here the response dimension for the simultaneous envelope has been fixed at two compo-

nents, which might have affected its performance, however, both envelope methods had

performed much better with the same restriction in the case of prediction.

Figure 7 also shows in both designs that Senv has large estimation errors when the number

of components is not optimal. This is also true for the PLS2 model, however, the extent of

this variation is noticeably large for the Senv method. A similar observation as Senv is

also found in Xenv method while PCR and PLS1 are closer to the PLS2 in terms of their

use of components in order to produce the minimum error (See Table 1).

In addition to the prediction and estimation error, Figure 6 gives a closer view of how the

average coefficients corresponding to these methods approximate to the true values. Here

PLS2 has used seven to eight components to reach the closest approximation to the true

coefficients, but with increasing errors after including more components than eight. This

departure from true coefficients is usual for PLS when the relevant components are at 1, 2,

3, 4 whereas PCR has shown more stable result in such situations. Further, the envelope

methods have presented their ability to converge estimates to the true value in just one

or two components. However, one should be cautious about determining the optimal

components in these methods due to a highly unstable and large error in non-optimal

cases.

Despite having a large variation in prediction and estimation error, the envelope based

methods have produced a better result even for the difficult data cases as shown for Design

9.

7. Analysis

A statistical analysis using a Multivariate Analysis of variance (MANOVA) model is per-

formed on both the error dataset and the component dataset in order to better understand the

association between data properties and the estimation methods. Let the corresponding

MANOVA models be termed as the error model (9) and the component model (10) in the
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Figure 7: Minimum prediction and estimation error for PLS2 and Simultaneous Envelope methods. The
point and lines are averaged over 50 replications.
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Table 1: Minimum Prediction and Estimation Error for Design 9

Design Response PCR PLS1 PLS2 Senv Xenv

Design 9
Estimation Error

9 1 8.56 (8) 13.23 (6) 8.17 (8) 6.65 (1) 5.73 (1)
9 2 7.94 (8) 14.42 (6) 10.65 (8) 5.06 (1) 5.35 (1)
9 3 7.02 (8) 15.9 (6) 8.22 (7) 8.55 (1) 5 (1)
9 4 9.26 (8) 13.14 (7) 8.29 (7) 8.19 (1) 4.78 (1)

Prediction Error
9 1 1.08 (8) 1.1 (7) 1.09 (8) 1.03 (1) 1.03 (1)
9 2 1.09 (8) 1.11 (7) 1.1 (8) 1.03 (1) 1.03 (1)
9 3 1.08 (8) 1.1 (7) 1.1 (7) 1.04 (1) 1.03 (1)
9 4 1.09 (8) 1.1 (7) 1.09 (7) 1.04 (1) 1.03 (1)

Design 29
Estimation Error

29 1 6.16 (8) 13.64 (7) 8.67 (7) 13.45 (1) 13.05 (1)
29 2 6.29 (8) 12.3 (7) 8.49 (8) 13.62 (1) 10.98 (1)
29 3 6.73 (8) 13.03 (7) 6.54 (8) 14.72 (1) 16.24 (1)
29 4 6.28 (8) 12.51 (7) 8.66 (8) 10.76 (1) 10.27 (1)

Prediction Error
29 1 1.09 (8) 1.1 (8) 1.1 (8) 1.07 (4) 1.1 (5)
29 2 1.1 (8) 1.11 (8) 1.09 (8) 1.1 (5) 1.11 (1)
29 3 1.1 (8) 1.1 (8) 1.1 (8) 1.09 (4) 1.13 (5)
29 4 1.09 (8) 1.11 (8) 1.09 (8) 1.09 (5) 1.11 (1)

following. In the MANOVA model, we will consider the interaction of simulation parame-

ters (p, gamma, eta, and relpos) and Method The models are fitted using correspondingly

the error dataset (u) and the component dataset (v).

Error Model:

u = µ + (p + gamma + eta + relpos + Methods)3 + ε (9)

Component Model:

v = µ + (p + gamma + eta + relpos + Methods)3 + ε (10)

where, u corresponds to the estimation errors in error dataset and v corresponds to the
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number of components used by a method to obtain minimum estimation error in the

component dataset.

To make the analysis equivalent to Rimal et al. (2019), we have also used Pillai’s trace

statistic for accessing the result of MANOVA. Figure 8 plots the Pillai’s trace statistics as

bars with corresponding F-values as text labels. The leftmost plot corresponds to the error

model and the rightmost plot corresponds to the component model. Here we use the custom

R-notation indicating interactions up to order three for the parameters within the brackets.
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text labels are F-value for the corresponding factor.

Error Model: Unlike for the prediction error in Rimal et al. (2019), Method has a smaller

effect, while the amount of multicollinearity, controlled by the gamma parameter, has
18
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a larger effect in the case of estimation error (Figure 8). In addition, the position

of relevant components and its interaction with the gamma parameters also have

substantial effects on the estimation error. This also supports the results seen in the

Exploration section where relevant predictors at position 5, 6, 7, 8 combined with

high multicollinearity creates a large uninformative variance in the components 1, 2,

3, 4 making the design difficult with regards to estimation. The effect of this on the

estimation error is much larger than on the prediction error.

Furthermore, the eta factor controlling the correlation between the responses, and

its second-order interaction with other factors except for the number of predictors is

significant. The effect is also comparable with the main effect of Method and eta.

Component Model: Although Method does not have a large impact on the estimation

error, the component model in Figure 8 (right) shows that the methods are significantly

different and has a huge effect on the number of components they use to obtain the

minimum estimation error. The result also corresponds to the case of prediction

error in Rimal et al. (2019). However, the F-value corresponding the relpos and

gamma shows that the importance of these factors is much stronger compared to the

case of prediction error.

The following section will further explore the effects of individual levels of different

factors.

7.1. Effect Analysis of the Error Model

In figure 9 (left), the effect of correlation between the responses controlled by the eta

parameter has a clear influence on the estimation error for the envelope methods. In the

case of designs with uncorrelated responses, envelope methods have on average smallest

estimation errors. While PCR and PLS2, being somewhat invariant to the effect of this

correlation structure, have performed better than the envelope methods in the designs

with highly correlated responses.

For all methods, the error in the case of relevant predictors at positions 5, 6, 7, 8 is huge as

compared to the case where relevant predictors are at positions 1, 2, 3, 4.
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Figure 9: Effect plot of some interactions of the MANOVA corresponding to fitted error model

Figure 9 (right) shows a large difference in the effect of the two levels of the position of

relevant components, especially in the designs with high multicollinearity. In the case of

high multicollinearity, all methods have noticeable poorer performance compared to the

case of low multicollinearity.

Finally, we note that the average estimation error corresponding to envelop methods in

the designs with low multicollinearity is smaller than for the other methods.

7.2. Effect Analysis of the Component Model

In the case of the fitted component model, envelope methods are the clear winner in almost

all designs. In the case of low multicollinearity and position of relevant predictors at 1, 2,

3, 4, PLS1 has obtained the minimum estimation error similar to the envelope methods,

however, in the case of high multicollinearity PLS1 has also used a fairly large number of

components to obtain the minimum estimation error. Although the envelope methods

have comparable minimum estimation error in some of the designs, in almost all the

designs these methods have used 1-2 components on average. The effect of the correlation
20



i
i

“Thesis” — 2019/10/8 — 23:16 — page 97 — #109 i
i

i
i

i
i

in the response has minimal effect on the number of components used by the methods.

The design 9, which we have considered in the previous section, has minimum estimation

error for both envelope methods using only one predictor component. In design 29,

where the envelope methods have poorer performance than the other methods due to

highly correlated responses, the number of components used by them is still one. This

corresponds to the results seen in Figure 10. As seen previously, PCR uses, in general, a

larger number of components than the other methods.
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Figure 10: Effect plots of some interactions of the multivariate linear model corresponding to the component
model.

8. Discussion and Conclusion

The overall performance of all methods highly depends on the nature of the data. The

MANOVA plots show that most of the simulation parameters, except p, has significant

interaction with the methods. In addition, the high interaction of gamma with the relpos

parameter suggests to carefully consider the number of relevant predictor components
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in the case of highly multicollinear data since this choice may have a large effect on the

results. Although the interaction does not have this extent of influence in prediction,

one should be careful about interpreting the estimates. In such cases, careful validation

of model complexity, preferably using cross-validation or test data is advisable also for

estimation purposes.

Designs with low multicollinearity and independent responses are in favour of envelope

methods. The methods have produced the smallest prediction and estimation error with

significantly few numbers of components in these designs. However, as the correlation

in the responses increases, the estimation error in envelope methods in most cases also

increases noticeably. This indicates that the reduction of the response space becomes

unstable with high collinearity between the responses for the envelope methods. Despite

the interaction of the eta parameter with the method is significant, the extent of its effect

is rather small compared to both main and interaction effect of gamma and relpos.

The effect of the number of variables is negligible in all cases for all designs. Here the use

of principal components for reducing the dimension of n < p designs, as in Rimal et al.

(2019), has been useful so that we were able to model the data using envelope methods

without losing too-much variation in the data.

Both prediction and estimation corresponding to PCR methods are found to be stable

even when the non-optimal number of components are used. The PLS1 method, which

models the responses separately, is in general performing poorer than other methods.

Unlike in prediction comparison, the performance of the envelope methods is comparable

to the others except for the use of the number of components to obtain the minimum

estimation error. The envelope methods have used 1-2 components in almost all designs,

which is quite impressive. However, non-optimal number of components can lead to large

estimation error, so one should be careful in this respect while using the envelope methods.

Both PLS1 and PLS2 use a smaller number of components when the relevant components

are at positions 1, 2, 3, 4. However, both methods used 7-8 components for the designs

with relevant components at positions 5, 6, 7, 8.

We expect the results from this study may help researchers, working on theory, application
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and modelling, to understand these methods and their performance on data with varying

properties.

The first part of this study (Rimal et al., 2019) on prediction comparison should be consid-

ered to obtain a comprehensive view of this comparison. A shiny (Chang et al., 2018) web

application at http://therimalaya.shinyapps.io/Comparison allows readers to explore all

the visualizations for both prediction and estimation comparisons. In addition, a GitHub

repository at https://github.com/therimalaya/04-estimation-comparison can be used to

reproduce this study.
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